

COMUNE DI AFRAGOLA PROVINCIA DI NAPOLI

Lavori di rifacimento fognatura alla Via Lagnuolo nel Comune di Afragola

Progetto Definitivo/Esecutivo

(Art. 23 D.Lgs. n.50/2016)

ID	3	Disciplinare tecnico prestazionale -
Cod. El.	ED 03	Prescrizioni tecnico-esecutive

Revisione	Data	Descrizione
0	10/09/2018	Prima emissione

Progettista Ing. Marco Pagano	Scala grafica:
----------------------------------	----------------

CAPITOLO 1

QUALITÀ DEI MATERIALI E DEI COMPONENTI

Art. 1.1 NORME GENERALI - ACCETTAZIONE QUALITÀ ED IMPIEGO DEI MATERIALI

Quale regola generale si intende che i materiali, i prodotti ed i componenti occorrenti per la costruzione delle opere, proverranno da quelle località che l'Appaltatore riterrà di sua convenienza, purché, ad insindacabile qiudizio della Direzione dei Lavori, rispondano alle caratteristiche/prestazioni di seguito indicate.

I materiali e i componenti devono corrispondere alle prescrizioni di legge e del presente Capitolato Speciale d'Appalto. Essi dovranno essere della migliore qualità e perfettamente lavorati, inoltre, possono essere messi in opera solamente dopo l'accettazione della Direzione dei Lavori; in caso di controversia, si procede ai sensi dell'art. 164 del D.P.R. n. 207/2010.

Per quanto non espresso nel presente Capitolato Speciale d'Appalto, relativamente all'accettazione, qualità e impiego dei materiali, alla loro provvista, il luogo della loro provenienza e l'eventuale sostituzione di quest'ultimo, si applica rispettivamente l'art. 167 del D.P.R. n. 207/2010 e gli articoli 16 e 17 del Capitolato generale d'appalto D.M. 145/2000.

L'accettazione dei materiali e dei componenti è definitiva solo dopo la loro posa in opera. La Direzione dei Lavori può rifiutare in qualunque tempo i materiali e i componenti deperiti dopo l'introduzione in cantiere, o che per qualsiasi causa non fossero conformi alle caratteristiche tecniche risultanti dai documenti allegati al contratto; in quest'ultimo caso l'Appaltatore deve rimuoverli dal cantiere e sostituirli con altri a sue spese.

Ove l'Appaltatore non effettui la rimozione nel termine prescritto dalla Direzione dei Lavori, la Stazione Appaltante può provvedervi direttamente a spese dell'esecutore, a carico del quale resta anche qualsiasi onere o danno che possa derivargli per effetto della rimozione eseguita d'ufficio.

Anche dopo l'accettazione e la posa in opera dei materiali e dei componenti da parte dell'Appaltatore, restano fermi i diritti e i poteri della Stazione Appaltante in sede di collaudo.

L'esecutore che, di sua iniziativa, abbia impiegato materiali o componenti di caratteristiche superiori a quelle prescritte nei documenti contrattuali, o eseguito una lavorazione più accurata, non ha diritto ad aumento dei prezzi e la contabilità è redatta come se i materiali avessero le caratteristiche stabilite.

Nel caso sia stato autorizzato per ragioni di necessità o convenienza, da parte della Direzione dei Lavori, l'impiego di materiali o componenti aventi qualche carenza nelle dimensioni, nella consistenza o nella qualità, ovvero sia stata autorizzata una lavorazione di minor pregio, viene applicata una adeguata riduzione del prezzo in sede di contabilizzazione, sempre che l'opera sia accettabile senza pregiudizio e salve le determinazioni definitive dell'organo di collaudo.

Gli accertamenti di laboratorio e le verifiche tecniche obbligatorie, ovvero specificamente previsti dal Capitolato Speciale d'Appalto, sono disposti dalla Direzione dei Lavori o dall'organo di collaudo, imputando la spesa a carico delle somme a disposizione accantonate a tale titolo nel quadro economico. Per le stesse prove la Direzione dei Lavori provvede al prelievo del relativo campione ed alla redazione di apposito verbale di prelievo; la certificazione effettuata dal laboratorio prove materiali riporta espresso riferimento a tale verbale.

La Direzione dei Lavori o l'organo di collaudo possono disporre ulteriori prove ed analisi ancorché non prescritte nel presente Capitolato ma ritenute necessarie per stabilire l'idoneità dei materiali o dei componenti. Le relative spese sono poste a carico dell'Appaltatore.

Nel caso di prodotti industriali la rispondenza a questo capitolato può risultare da un attestato di conformità rilasciato dal produttore e comprovato da idonea documentazione e/o certificazione.

L'appalto non prevede categorie di prodotti ottenibili con materiale riciclato, tra quelle elencate nell'apposito decreto ministeriale emanato ai sensi dell'art. 2, comma 1 lettera d) del D.M. n. 203/2003.

Art. 1.2 ACQUA, CALCI, CEMENTI ED AGGLOMERATI CEMENTIZI, POZZOLANE, GESSO

- a) Acqua L'acqua per l'impasto con leganti idraulici dovrà essere limpida, priva di grassi o sostanze organiche e priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non essere aggressiva per il conglomerato risultante.
- b) Calci Le calci aeree ed idrauliche, dovranno rispondere ai requisiti di accettazione delle norme tecniche vigenti; le calci idrauliche dovranno altresì corrispondere alle prescrizioni contenute nella legge 595/65 (Caratteristiche tecniche e requisiti dei leganti idraulici), ai requisiti di accettazione contenuti nelle norme tecniche vigenti, nonché alle norme UNI EN 459-1 e 459-2.
- c) Cementi e agglomerati cementizi.
 - 1) Devono impiegarsi esclusivamente i cementi previsti dalle disposizioni vigenti in materia (legge 26 maggio 1995 n. 595 e norme armonizzate della serie EN 197), dotati di attestato di conformità ai sensi delle norme UNI EN 197-1 e UNI EN 197-2.
 - 2) A norma di quanto previsto dal Decreto 12 luglio 1999, n. 314 (Regolamento recante norme per il rilascio dell'attestato di conformità per i cementi), i cementi di cui all'art. 1 lettera A) della legge 595/65 (e cioè i cementi normali e ad alta resistenza portland, pozzolanico e d'altoforno), se utilizzati per confezionare il conglomerato cementizio normale, armato e precompresso, devono essere certificati presso i laboratori di cui all'art. 6 della legge 595/65 e all'art. 59 del D.P.R. 380/2001 e s.m.i. Per i cementi di importazione, la procedura di controllo e di certificazione potrà essere svolta nei luoghi di produzione da analoghi laboratori esteri di analisi.
 - 3) I cementi e gli agglomerati cementizi dovranno essere conservati in magazzini coperti, ben riparati dall'umidità e da altri agenti capaci di degradarli prima dell'impiego.
- d) Pozzolane Le pozzolane saranno ricavate da strati mondi da cappellaccio ed esenti da sostanze eterogenee o di parti inerti; qualunque sia la provenienza dovranno rispondere a tutti i requisiti prescritti dalle norme tecniche vigenti.
- e) Gesso Il gesso dovrà essere di recente cottura, perfettamente asciutto, di fine macinazione in modo da non lasciare residui sullo staccio di 56 maglie a centimetro quadrato, scevro da materie eterogenee e senza parti alterate per estinzione spontanea. Il gesso dovrà essere conservato in locali coperti, ben riparati dall'umidità e da agenti degradanti. Per l'accettazione valgono i criteri generali dell'articolo "Norme Generali Accettazione Qualità ed Impiego dei Materiall" e le condizioni di accettazione stabilite dalle norme vigenti.
- f) Sabbie Le sabbie dovranno essere assolutamente prive di terra, materie organiche o altre materie nocive, essere di tipo siliceo (o in subordine quarzoso, granitico o calcareo), avere grana omogenea, e provenire da rocce con elevata resistenza alla compressione. Sottoposta alla prova di decantazione in acqua, la perdita in peso della sabbia non dovrà superare il 2%.
 - La sabbia utilizzata per le murature, per gli intonaci, le stuccature, le murature a faccia vista e per i conglomerati cementizi dovrà essere conforme a quanto previsto dal D.M. 14 gennaio 2008 e dalle relative norme vigenti.
 - La granulometria dovrà essere adeguata alla destinazione del getto ed alle condizioni di posa in opera. E' assolutamente vietato l'uso di sabbia marina.

I materiali dovranno trovarsi, al momento dell'uso in perfetto stato di conservazione.

Il loro impiego nella preparazione di malte e conglomerati cementizi dovrà avvenire con l'osservanza delle migliori regole d'arte.

Per quanto non espressamente contemplato, si rinvia alla seguente normativa tecnica: UNI EN 459 - UNI EN 197 - UNI EN ISO 7027 - UNI EN 413 - UNI 9156 - UNI 9606.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 1.3 MATERIALI INERTI PER CONGLOMERATI CEMENTIZI E PER MALTE

- 1) Tutti gli inerti da impiegare nella formazione degli impasti destinati alla esecuzione di opere in conglomerato cementizio semplice od armato devono corrispondere alle condizioni di accettazione stabilite dalle norme vigenti in materia.
- 2) Gli aggregati per conglomerati cementizi, naturali e di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose ed argillose, di getto, ecc., in proporzioni non nocive all'indurimento del conglomerato o alla conservazione delle armature.

La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all'ingombro delle armature. La sabbia per malte dovrà essere priva di sostanze organiche, terrose o argillose, ed avere dimensione massima dei grani di 2 mm per murature in genere, di 1 mm per gli intonaci e murature di paramento o in pietra da taglio.

- 3) Gli additivi per impasti cementizi, come da norma UNI EN 934, si intendono classificati come segue: fluidificanti; aeranti; ritardanti; acceleranti; fluidificanti-aeranti; fluidificanti-ritardanti; fluidificanti- acceleranti; antigelo-superfluidificanti. Per le modalità di controllo ed accettazione la Direzione dei Lavori potrà far eseguire prove od accettare, secondo i criteri dell'articolo "*Norme Generali Accettazione Qualità ed Impiego dei Materiall*", l'attestazione di conformità alle norme UNI EN 934, UNI EN 480 (varie parti).
- 4) I conglomerati cementizi per strutture in cemento armato dovranno rispettare tutte le prescrizioni di cui al D.M. 14 gennaio 2008 e relative circolari esplicative.

Per quanto non espressamente contemplato, si rinvia alla seguente normativa tecnica: UNI EN 934 (varie parti), UNI EN 480 (varie parti), UNI EN 13055-1.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 1.4 ELEMENTI DI LATERIZIO E CALCESTRUZZO

Gli elementi resistenti artificiali da impiegare nelle murature (elementi in laterizio ed in calcestruzzo) possono essere costituiti di laterizio normale, laterizio alleggerito in pasta, calcestruzzo normale, calcestruzzo alleggerito.

Quando impiegati nella costruzione di murature portanti, essi debbono rispondere alle prescrizioni contenute nel D.M. 14 gennaio 2008, nelle relative circolari esplicative e norme vigenti.

Nel caso di murature non portanti le suddette prescrizioni possono costituire utile riferimento, insieme a quelle della norma UNI EN 771.

Gli elementi resistenti di laterizio e di calcestruzzo possono contenere forature rispondenti alle prescrizioni del succitato D.M. 14 gennaio 2008 e dalle relative norme vigenti.

La resistenza meccanica degli elementi deve essere dimostrata attraverso certificazioni contenenti risultati delle prove e condotte da laboratori ufficiali negli stabilimenti di produzione, con le modalità previste nel D.M. di cui sopra.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

E' facoltà della Direzione dei Lavori richiedere un controllo di accettazione, avente lo scopo di accertare se gli elementi da mettere in opera abbiano le caratteristiche dichiarate dal produttore.

Art. 1.5 ARMATURE PER CALCESTRUZZO

Gli acciai per l'armatura del calcestruzzo normale devono rispondere alle prescrizioni contenute nel vigente D. M. attuativo della legge 1086/71 (D.M. 14 gennaio 2008) e relative circolari esplicative.

E' fatto divieto di impiegare acciai non qualificati all'origine.

Forniture e documentazione di accompagnamento

Tutte le forniture di acciaio, per le quali non sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla copia dell'attestato di qualificazione del Servizio Tecnico Centrale.

Il riferimento a tale attestato deve essere riportato sul documento di trasporto.

Le forniture effettuate da un commerciante intermedio devono essere accompagnate da copia dei documenti rilasciati dal Produttore e completati con il riferimento al documento di trasporto del commerciante stesso.

Il Direttore dei Lavori prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del produttore.

Centri di trasformazione

Il Centro di trasformazione, impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre o rotoli, reti, lamiere o profilati, profilati cavi, ecc.) e confeziona

elementi strutturali direttamente impiegabili in cantiere, pronti per la messa in opera o per successive lavorazioni, può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dalla documentazione prevista dalle norme vigenti.

Il Direttore dei Lavori è tenuto a verificare la conformità a quanto indicato al punto 11.3.1.7 del D.M. 14 gennaio 2008 e a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del centro di trasformazione. Della documentazione di cui sopra dovrà prendere atto il collaudatore, che riporterà, nel Certificato di collaudo, gli estremi del centro di trasformazione che ha fornito l'eventuale materiale lavorato.

Art. 1.6 PRODOTTI DI PIETRE NATURALI O RICOSTRUITE

1) La terminologia utilizzata (come da norma UNI EN 12670) ha il significato di seguito riportato, le denominazioni commerciali devono essere riferite a campioni, atlanti, ecc.

Marmo (termine commerciale).

Roccia cristallina, compatta, lucidabile, da decorazione e da costruzione, prevalentemente costituita da minerali di durezza Mohs da 3 a 4 (quali calcite, dolomite, serpentino).

A questa categoria appartengono:

- i marmi propriamente detti (calcari metamorfici ricristallizzati), i calcefiri ed i cipollini;
- i calcari, le dolomie e le brecce calcaree lucidabili;
- gli alabastri calcarei;
- le serpentiniti;
- oficalciti.

Granito (termine commerciale).

Roccia fanero-cristallina, compatta, lucidabile, da decorazione e da costruzione, prevalentemente costituita da minerali di durezza Mohs da 6 a 7 (quali quarzo, feldspati, felspatoidi)

A questa categoria appartengono:

- i graniti propriamente detti (rocce magmatiche intrusive acide fanerocristalline, costituite da quarzo, feldspati sodico
 - potassici e miche);
 - altre rocce magmatiche intrusive (dioriti, granodioriti, sieniti, gabbri, ecc.);
 - le corrispettive rocce magmatiche effusive, a struttura porfirica;
 - alcune rocce metamorfiche di analoga composizione come gneiss e serizzi.

Travertino

Roccia calcarea sedimentaria di deposito chimico con caratteristica strutturale vacuolare, da decorazione e da costruzione; alcune varietà sono lucidabili.

Pietra (termine commerciale)

Roccia da costruzione e/o da decorazione, di norma non lucidabile.

A questa categoria appartengono rocce di composizione mineralogica svariatissima, non inseribili in alcuna classificazione. Esse sono riconducibili ad uno dei due gruppi seguenti:

- rocce tenere e/o poco compatte;
- rocce dure e/o compatte.

Esempi di pietre del primo gruppo sono: varie rocce sedimentarie (calcareniti, arenarie a cemento calcareo, ecc.), varie rocce piroclastiche, (peperini, tufi, ecc.); al secondo gruppo appartengono le pietre a spacco naturale (quarziti, micascisti, gneiss lastroidi, ardesie, ecc.), e talune vulcaniti (basalti, trachiti, leucititi, ecc.).

Per gli altri termini usati per definire il prodotto in base alle forme, dimensioni, tecniche di lavorazione ed alla conformazione geometrica, vale quanto riportato nella norma UNI EN 12670 e UNI EN 14618.

- 2) I prodotti di cui sopra devono rispondere a quanto segue:
- a) appartenere alla denominazione commerciale e/o petrografica indicata nel progetto, come da norma UNI EN 12407 oppure avere origine del bacino di estrazione o zona geografica richiesta nonché essere conformi

ad eventuali campioni di riferimento ed essere esenti da crepe, discontinuità, ecc. che riducano la resistenza o la funzione;

- b) avere lavorazione superficiale e/o finiture indicate nel progetto e/o rispondere ai campioni di riferimento; avere le dimensioni nominali concordate e le relative tolleranze;
- c) delle seguenti caratteristiche il fornitore dichiarerà i valori medi (ed i valori minimi e/o la dispersione percentuale):
 - massa volumica reale ed apparente, misurata secondo la norma UNI EN 13755 e UNI EN 14617-1;
- coefficiente di imbibizione della massa secca iniziale, misurato secondo la norma UNI EN 13755 e UNI EN 14617;
 - resistenza a compressione, misurata secondo la norma UNI EN 1926 e UNI EN 14617;
 - resistenza a flessione, misurata secondo la norma UNI EN 12372 e UNI EN 14617;
 - modulo di elasticità, misurato secondo la norma e UNI EN 14146;
 - resistenza all'abrasione, misurata secondo le disposizioni del Regio Decreto 2234/39 e UNI EN 14617;
 - microdurezza Knoop, misurato secondo la norma e UNI EN 14205;
- d) per le prescrizioni complementari da considerare in relazione alla destinazione d'uso (strutturale per murature, pavimentazioni, coperture, ecc.) si rinvia agli appositi articoli del presente capitolato ed alle prescrizioni di progetto.

I valori dichiarati saranno accettati dalla Direzione dei Lavori anche in base ai criteri generali dell'articolo relativo ai materiali in genere ed in riferimento alle norme UNI EN 12057 e UNI EN 12058.

Per quanto non espressamente contemplato, si rinvia alla seguente normativa tecnica: UNI EN 14617 UNI EN 12407 - UNI EN 13755 - UNI EN 1926 - UNI EN 12372 - UNI EN 14146 - UNI EN 14205.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 1.7 MATERIALI METALLICI

I materiali metallici da impiegare nei lavori dovranno corrispondere alle qualità, prescrizioni e prove appresso indicate.

In generale, i materiali dovranno essere esenti da scorie, soffiature, bruciature, paglie o qualsiasi altro difetto apparente o latente di fusione, laminazione, trafilatura, fucinatura o simili.

Sottoposti ad analisi chimica, dovranno risultare esenti da impurità o da sostanze anormali.

La loro struttura micrografica dovrà essere tale da dimostrare l'ottima riuscita del processo metallurgico di fabbricazione e da escludere qualsiasi alterazione derivante dalle successive lavorazioni a macchina, o a mano, che possa menomare la sicurezza dell'impiego.

- Acciai

Gli acciai in barre, tondi, fili e per armature da precompressione dovranno essere conformi a quanto indicato nel D.M. 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni".

- Ghisa

La ghisa grigia per getti dovrà avere caratteristiche rispondenti, per qualità, prescrizioni e prove, alla norma UNI EN 1561.

La ghisa malleabile per getti dovrà avere caratteristiche rispondenti, per qualità prescrizioni e prove, alla norma UNI EN 1562.

- Rame

Il rame dovrà avere caratteristiche rispondenti, per qualità, prescrizioni e prove, alla norma UNI EN 1977.

- Ferro

Il ferro comune sarà di prima qualità: dolce, eminentemente duttile, malleabile a freddo e a caldo, tenace, di marcata struttura fibrosa; dovrà essere liscio senza pagliette, sfaldature, screpolature, vene, bolle, soluzioni di continuità e difetti di qualsiasi natura.

I manufatti di ferro per i quali non venga richiesta la zincatura dovranno essere forniti con mano di vernice antiruggine.

- Zincatura

Per la zincatura di profilati di acciaio, lamiere di acciaio, tubi, oggetti in ghisa, ghisa malleabile e acciaio fuso, dovranno essere rispettate le prescrizioni delle norme UNI EN 10244-1 e UNI EN 10244-2.

CAPITOLO 2

MOVIMENTI DI MATERIE, OPERE MURARIE E VARIE

Art. 2.1 COLLOCAMENTO IN OPERA - NORME GENERALI

L'Appaltatore, oltre alle modalità esecutive prescritte per ogni categoria di lavoro, è obbligato ad impiegare ed eseguire tutte le opere provvisionali ed usare tutte le cautele ritenute a suo giudizio indispensabili per la buona riuscita delle opere e per la loro manutenzione e per garantire da eventuali danni o piene sia le attrezzature di cantiere che le opere stesse.

La posa in opera di qualsiasi materiale, apparecchio o manufatto, consisterà in genere nel suo prelevamento dal luogo di deposito, nel suo trasporto in sito (intendendosi con ciò tanto il trasporto in piano o in pendenza, che il sollevamento in alto o la discesa in basso, il tutto eseguito con qualsiasi sussidio o mezzo meccanico, opera provvisionale, ecc.), nonché nel collocamento nel luogo esatto di destinazione, a qualunque altezza o profondità ed in qualsiasi posizione, ed in tutte le opere conseguenti.

L'Appaltatore ha l'obbligo di eseguire il collocamento di qualsiasi opera od apparecchio che le venga ordinato dalla Direzione dei Lavori, anche se forniti da altre ditte.

Il collocamento in opera dovrà eseguirsi con tutte le cure e cautele del caso; il materiale o manufatto dovrà essere convenientemente protetto, se necessario, anche dopo collocato, essendo l'Appaltatore unico responsabile dei danni di qualsiasi genere che potessero essere arrecati alle cose poste in opera, anche dal solo traffico degli operai durante e dopo l'esecuzione dei lavori, sino al loro termine e consegna, anche se il particolare collocamento in opera si svolge sotto la sorveglianza o assistenza del personale di altre ditte, fornitrici del materiale o del manufatto.

Art. 2.2 COLLOCAMENTO IN OPERA DI MATERIALI FORNITI DALLA STAZIONE APPALTANTE

Qualsiasi apparecchio, materiale o manufatto fornito dalla Stazione Appaltante sarà consegnato assieme alle istruzioni che l'Appaltatore riceverà tempestivamente. Pertanto l'Appaltatore dovrà provvedere al suo trasporto in cantiere, immagazzinamento e custodia, e successivamente alla loro posa in opera, a seconda delle istruzioni che riceverà, eseguendo le opere di adattamento e ripristino che si rendessero necessarie.

Per il collocamento in opera dovranno seguirsi inoltre tutte le norme indicate per ciascuna opera nel presente Capitolato, restando sempre l'Appaltatore responsabile della buona conservazione del materiale consegnatogli, prima e dopo del suo collocamento in opera.

Art. 2.3 SCAVI IN GENERE

Gli scavi in genere per qualsiasi lavoro, a mano o con mezzi meccanici, dovranno essere eseguiti secondo i disegni di progetto e la relazione geologica e geotecnica di cui alle norme tecniche vigenti, nonché secondo le particolari prescrizioni che saranno date all'atto esecutivo dalla Direzione dei Lavori.

Nell'esecuzione degli scavi in genere l'Appaltatore dovrà procedere in modo da impedire scoscendimenti e franamenti, restando esso, oltreché totalmente responsabile di eventuali danni alle persone ed alle opere, altresì obbligato a provvedere a suo carico e spese alla rimozione delle materie franate.

L'Appaltatore dovrà, inoltre, provvedere a sue spese affinché le acque scorrenti alla superficie del terreno siano deviate in modo che non abbiano a riversarsi negli scavi.

Le materie provenienti dagli scavi, ove non siano utilizzabili o non ritenute adatte (a giudizio insindacabile della Direzione dei Lavori) ad altro impiego nei lavori, dovranno essere portate fuori della sede del cantiere, alle pubbliche discariche ovvero su aree che l'Appaltatore dovrà provvedere a rendere disponibili a sua cura e spese.

Qualora le materie provenienti dagli scavi debbano essere successivamente utilizzate, il loro utilizzo e/o deposito temporaneo avverrà nel rispetto delle disposizioni del D.Lgs. n. 152/2006 e s.m.i. e del D.M. n.

161/2012 "Regolamento recante la disciplina dell'utilizzazione delle terre e rocce da scavo". In ogni caso le materie depositate non dovranno essere di intralcio o danno ai lavori, alle proprietà pubbliche o private ed al libero deflusso delle acque scorrenti in superficie.

La Direzione dei Lavori potrà fare asportare, a spese dell'Appaltatore, le materie depositate in contravvenzione alle precedenti disposizioni.

Qualora i materiali siano ceduti all'Appaltatore, si applicano le disposizioni di legge.

L'appaltatore deve trasportarli e regolarmente accatastarli nel luogo stabilito negli atti contrattuali, intendendosi di ciò compensato coi prezzi degli scavi e delle demolizioni relative.

Qualora gli atti contrattuali prevedano la cessione di detti materiali all'Appaltatore, il prezzo ad essi convenzionalmente attribuito deve essere dedotto dall'importo netto dei lavori, salvo che la deduzione non sia stata già fatta nella determinazione dei prezzi.

Art. 2.4 SCAVI DI SBANCAMENTO

Per scavi di sbancamento o sterri andanti s'intendono quelli occorrenti per lo spianamento o sistemazione del terreno su cui dovranno sorgere le costruzioni, per tagli di terrapieni, per la formazione di cortili, giardini, scantinati, piani di appoggio per platee di fondazione, vespai, rampe incassate o trincee stradali, ecc., e in generale tutti quelli eseguiti a sezione aperta su vasta superficie ove sia possibile l'allontanamento delle materie di scavo evitandone il sollevamento, sia pure con la formazione di rampe provvisorie ecc.

Saranno pertanto considerati scavi di sbancamento anche quelli che si trovano al di sotto del piano di campagna o del piano stradale di progetto (se inferiore al primo), quando gli scavi rivestano i caratteri sopra accennati, poiché per scavi di fondazione in generale si intendono quelli incassati ed a sezione ristretta.

Art. 2.5 RILEVATI E RINTERRI

Per la formazione dei rilevati o per qualunque opera di rinterro, ovvero per riempire i vuoti tra le pareti dei cavi e le murature, o da addossare alle murature, e fino alle quote prescritte dalla Direzione dei Lavori, si impiegheranno in generale, nel rispetto delle norme vigenti relative tutela ambientale, salvo quanto segue, fino al loro totale esaurimento, tutte le materie provenienti dagli scavi di qualsiasi genere eseguiti per quel cantiere, in quanto disponibili ed adatte, a giudizio della Direzione dei Lavori, per la formazione dei rilevati.

Quando venissero a mancare in tutto o in parte i materiali di cui sopra, si preleveranno le materie occorrenti ovunque l'Appaltatore crederà di sua convenienza, purché i materiali siano riconosciuti idonei dalla Direzione dei Lavori.

Le terre, macinati e rocce da scavo, per la formazione di aree prative, sottofondi, reinterri, riempimenti, rimodellazioni e rilevati, conferiti in cantiere, devono rispettare le norme vigenti, i limiti previsti dalla Tabella 1 - Valori di concentrazione limite accettabili nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare, colonna A (Siti ad uso Verde pubblico, privato e residenziale) e colonna B (Siti ad uso Commerciale ed Industriale) dell'Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e s.m.i. e il D.M. 161/2012 "Regolamento recante la disciplina dell'utilizzazione delle terre e rocce da scavo".

Per i rilevati e i rinterri da addossarsi alle murature, si dovranno sempre impiegare materie sciolte, o ghiaiose, restando vietato in modo assoluto l'impiego di quelle argillose e, in generale, di tutte quelle che con l'assorbimento di acqua si rammolliscono e si gonfiano generando spinte.

Nella formazione dei suddetti rilevati, rinterri e riempimenti dovrà essere usata ogni diligenza perché la loro esecuzione proceda per strati orizzontali di eguale altezza, disponendo contemporaneamente le materie bene sminuzzate con la maggiore regolarità e precauzione, in modo da caricare uniformemente le murature su tutti i lati e da evitare le sfiancature che potrebbero derivare da un carico male distribuito.

Le materie trasportate in rilevato o rinterro con automezzi o carretti non potranno essere scaricate direttamente contro le murature o pareti di scavo, ma dovranno depositarsi in vicinanza dell'opera per essere riprese poi al momento della formazione dei suddetti rinterri.

Per tali movimenti di materie dovrà sempre provvedersi alla pilonatura delle materie stesse, da farsi secondo le prescrizioni che verranno indicate dalla Direzione dei Lavori.

E' vietato addossare terrapieni a murature di fresca costruzione.

Tutte le riparazioni o ricostruzioni che si rendessero necessarie per la mancata o imperfetta osservanza delle prescrizioni del presente articolo, saranno a completo carico dell'Appaltatore.

E' obbligo dell'Appaltatore, escluso qualsiasi compenso, di dare ai rilevati durante la loro costruzione, quelle maggiori dimensioni richieste dall'assestamento delle terre, affinché all'epoca del collaudo i rilevati eseguiti

abbiano dimensioni non inferiori a quelle ordinate.

L'Appaltatore dovrà consegnare i rilevati con scarpate regolari e spianate, con cigli bene allineati e profilati e compiendo a sue spese, durante l'esecuzione dei lavori e fino al collaudo, gli occorrenti ricarichi o tagli, la ripresa e la sistemazione delle scarpate e l'espurgo dei fossi.

La superficie del terreno sulla quale dovranno elevarsi i terrapieni, sarà previamente scoticata ove occorra, e se inclinata sarà tagliata a gradoni con leggera pendenza verso monte.

Art. 2.6 PARATIE A PALANCOLE METALLICHE INFISSE

Le palancole metalliche, di sezione varia, devono rispondere comunque ai seguenti requisiti fondamentali: adeguata resistenza agli sforzi di flessione, facilità di infissione, impermeabilità delle giunzioni, facilità di estrazione e reimpiego (ove previsto), elevata protezione contro le corrosioni.

L'infissione delle palancole sarà effettuata con i sistemi normalmente in uso. Il maglio dovrà essere di peso complessivo non minore del peso delle palancole compresivo della relativa cuffia.

Dovranno essere adottate speciali cautele affinchè durante l'infissione gli incastri liberi non si deformino e rimangano puliti da materiali così da garantire la guida alla successiva palancola. A tale scopo gli incastri prima dell'infissione dovranno essere riempiti di grasso.

Durante l'infissione si dovrà procedere in modo che le palancole rimangano perfettamente verticali non essendo ammesse deviazioni, disallineamenti o fuoriuscita dalle guide. Per ottenere un più facile affondamento, specialmente in terreni ghiaiosi e sabbiosi, l'infissione, oltre che con la battitura potrà essere realizzata con il sussidio dell'acqua in pressione fatta arrivare, mediante un tubo metallico, sotto la punta della palancola.

Se durante l'infissione si verificassero fuoriuscite delle guide, disallineamenti o deviazioni che a giudizio della direzione dei lavori non fossero tollerabili, la palancola dovrà essere rimossa e reinfissa o sostituita, se danneggiata

Art. 2.7 MALTE E CONGLOMERATI

I quantitativi dei diversi materiali da impiegare per la composizione delle malte e dei conglomerati, secondo le particolari indicazioni che potranno essere imposte dalla Direzione dei Lavori o stabilite nell'elenco prezzi, dovranno corrispondere alle sequenti proporzioni:

1°	Malta comune:	
	Calce comune in pasta	0,45 m³
	Sabbia	0,90 m³
2°	Malta semidraulica di pozzolana:	
	Calce comune in pasta	0,45 m³
	Sabbia	0,45 m ³
	Pozzolana	0,45 m³
3°	Malta idraulica:	
	Calce idraulica	0,90 m³
	Sabbia	
4°	Malta idraulica di pozzolana:	
	Calce comune in pasta	0,45 m³
	Pozzolana	0,90 m ³
5°	Malta cementizia:	
	Agglomerante cementizio a lenta presa	1,00 m³
	Sabbia	
6°	Malta cementizia (per intonaci):	
	Agglomerante cementizio a lenta presa	1,00 m³
	Sabbia	
7°	Calcestruzzo idraulico (per fondazione):	
	Malta idraulica	0,45 m³
	Pietrisco o ghiaia	0,90 m³
8°	Smalto idraulico per cappe:	
	Malta idraulica	0,45 m³
	Pietrisco	0,90 m³
9°	Conglomerato cementizio (per fondazioni non armate):	
	Cemento normale (a lenta presa)	2,00 q
	Sabbia	0,400 m³
	Pietrisco o ghiaia	0,800 m³
10°	Conglomerato cementizio (per cunette, piazzuole, ecc.):	
	Agglomerante cementizio a lenta presa	2÷2,5 q
	Sabbia	0,400 m³

	Pietrisco o ghiaia	0,800 m³
11°	Conglomerato per calcestruzzi semplici ed armati:	
	Cemento	3,00 q
	Sabbia	0,400 m ³
	Pietrisco e ghiaia	0,800 m ³
12°	Conglomerato cementizio per pietra artificiale (per parapetti o coronamenti di ponti, ponticelli o tombini):	
	Agglomerante cementizio a lenta presa	3,50 q
	Sabbia	0,400 m ³
	Pietrisco o ghiaia	0,800 m³
	Graniglia marmo nella parte vista battuta a martellina	
13°	Conglomerato per sottofondo di pavimentazioni in cemento a doppio strato:	
	Agglomerante cementizio a lenta presa	2,00 q
	Sabbia	0,400 m³
	Pietrisco	0,800 m³
14°	Conglomerato per lo strato di usura di pavimenti in cemento a due strati, oppure per	
	pavimentazioni ad unico strato:	
	Cemento ad alta resistenza	3,50 q
	Sabbia	0,400 m ³
	Pietrisco	0,800 m ³

Quando la Direzione dei Lavori ritenesse di variare tali proporzioni, l'Appaltatore sarà obbligato ad uniformarsi alle prescrizioni della medesima, salvo le conseguenti variazioni di prezzo in base alle nuove proporzioni previste. I materiali, le malte ed i conglomerati, esclusi quelli forniti in sacchi di peso determinato, dovranno ad ogni impasto essere misurati con apposite casse della capacità prescritta dalla Direzione dei Lavori e che l'Appaltatore sarà in obbligo di provvedere e mantenere a sue spese costantemente su tutti i piazzali ove verrà effettuata la manipolazione.

L'impasto dei materiali dovrà essere fatto a braccia d'uomo, sopra aree convenientemente pavimentate, oppure a mezzo di macchine impastatrici o mescolatrici.

Gli ingredienti componenti le malte cementizie saranno prima mescolati a secco, fino ad ottenere un miscuglio di tinta uniforme, il quale verrà poi asperso ripetutamente con la minore quantità di acqua possibile ma sufficiente, rimescolando continuamente.

Nella composizione di calcestruzzi con malta di calce comune od idraulica, si formerà prima l'impasto della malta con le proporzioni prescritte, impiegando la minore quantità di acqua possibile, poi si distribuirà la malta sulla ghiaia o pietrisco e si mescolerà il tutto fino a che ogni elemento sia per risultare uniformemente distribuito nella massa ed avviluppato di malta per tutta la superficie.

Per i conglomerati cementizi semplici o armati gli impasti dovranno essere eseguiti in conformità alle prescrizioni del D.M. 14 gennaio 2008.

Quando sia previsto l'impiego di acciai speciali sagomati ad alto limite elastico deve essere prescritto lo studio preventivo della composizione del conglomerato con esperienze di laboratorio sulla granulometria degli inerti e sul dosaggio di cemento per unità di volume del getto.

Il quantitativo d'acqua deve essere il minimo necessario compatibile con una sufficiente lavorabilità del getto e comunque non superiore allo 0,4 in peso del cemento, essendo inclusa in detto rapporto l'acqua unita agli inerti, il cui quantitativo deve essere periodicamente controllato in cantiere.

I getti debbono essere convenientemente vibrati.

Durante i lavori debbono eseguirsi frequenti controlli della granulometria degli inerti, mentre la resistenza del conglomerato deve essere comprovata da frequenti prove a compressione su cubetti prima e durante i getti.

Gli impasti sia di malta che di conglomerato, dovranno essere preparati solamente nella quantità necessaria, per l'impiego immediato, cioè dovranno essere preparati volta per volta e per quanto è possibile in vicinanza del lavoro. I residui di impasti che non avessero, per qualsiasi ragione, immediato impiego dovranno essere gettati a rifiuto, ad eccezione di quelli di malta formati con calce comune, che potranno essere utilizzati però nella sola stessa giornata del loro confezionamento.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 2.8 DEMOLIZIONI E RIMOZIONI

Le demolizioni di murature, calcestruzzi, ecc., sia parziali che complete, devono essere eseguite con ordine e con le necessarie precauzioni, in modo da non danneggiare le residue murature, da prevenire qualsiasi infortunio agli addetti al lavoro e da evitare incomodi, danni collaterali o disturbo.

Rimane pertanto vietato di gettare dall'alto i materiali in genere, che invece devono essere trasportati o guidati in basso, e di sollevare polvere, per cui tanto le murature quanto i materiali di risulta dovranno essere opportunamente bagnati.

Nelle demolizioni e rimozioni l'Appaltatore deve inoltre provvedere alle eventuali necessarie puntellature per sostenere le parti che devono restare e disporre in modo da non deteriorare i materiali risultanti, i quali devono ancora potersi impiegare nei limiti concordati con la Direzione dei Lavori, sotto pena di rivalsa di danni a favore della Stazione Appaltante.

Le demolizioni dovranno limitarsi alle parti ed alle dimensioni prescritte. Quando, anche per mancanza di puntellamenti o di altre precauzioni, venissero demolite altre parti od oltrepassati i limiti fissati, saranno pure a cura e spese dell'Appaltatore, senza alcun compenso, ricostruite e rimesse in ripristino le parti indebitamente demolite.

Tutti i materiali riutilizzabili, a giudizio insindacabile della Direzione dei Lavori, devono essere opportunamente puliti, custoditi, trasportati ed ordinati nei luoghi di deposito che verranno indicati dalla direzione stessa, usando cautele per non danneggiarli sia nella pulizia, sia nel trasporto, sia nei loro assestamenti e per evitarne la dispersione.

Detti materiali restano tutti di proprietà della Stazione Appaltante, la quale potrà ordinare all'Appaltatore di impiegarli in tutto od in parte nei lavori appaltati.

I materiali di scarto provenienti dalle demolizioni e rimozioni devono sempre dall'Appaltatore essere trasportati fuori del cantiere nei punti indicati od alle pubbliche discariche.

Art. 2.9 CALCESTRUZZI E CEMENTO ARMATO

Gli impasti di conglomerato cementizio dovranno essere eseguiti in conformità con quanto previsto dal D.M. 14 gennaio 2008 e dalle relative norme vigenti.

Il calcestruzzo da impiegarsi per qualsiasi lavoro sarà messo in opera appena confezionato e disposto a strati orizzontali di altezza da 20 a 30 cm, su tutta l'estensione della parte di opera che si esegue ad un tempo, ben battuto e costipato, per modo che non resti alcun vano nello spazio che deve contenerlo e nella sua massa.

Quando il calcestruzzo sia da collocare in opera entro cavi molto stretti od a pozzo, esso dovrà essere calato nello scavo mediante secchi a ribaltamento.

Solo nel caso di scavi molto larghi, la Direzione dei Lavori potrà consentire che il calcestruzzo venga gettato liberamente, nel qual caso prima del conguagliamento e della battitura deve, per ogni strato di 30 cm d'altezza, essere ripreso dal fondo del cavo e rimpastato per rendere uniforme la miscela dei componenti.

Quando il calcestruzzo sia da calare sott'acqua, si dovranno impiegare tramogge, casse apribili o quegli altri mezzi d'immersione che la Direzione dei Lavori prescriverà, ed userà la diligenza necessaria ad impedire che, nel passare attraverso l'acqua, il calcestruzzo si dilavi con pregiudizio della sua consistenza.

Finito che sia il getto, e spianata con ogni diligenza la superficie superiore, il calcestruzzo dovrà essere lasciato assodare per tutto il tempo che la Direzione dei Lavori stimerà necessario.

Nell'esecuzione delle opere in cemento armato normale e precompresso l'Appaltatore dovrà attenersi strettamente a tutte le norme contenute nel D.P.R. 380/2001 e s.m.i., nel D.M. 14 gennaio 2008 e nella relativa normativa vigente.

Tutte le opere in cemento armato facenti parte dell'opera appaltata saranno eseguite in base ai calcoli di stabilità accompagnati da disegni esecutivi e da una relazione, che dovranno essere redatti e firmati da un tecnico libero professionista iscritto all'albo, e che l'Appaltatore dovrà presentare alla Direzione dei Lavori entro il termine che le verrà prescritto, attenendosi agli schemi e disegni facenti parte del progetto ed allegati al contratto o alle norme che le verranno impartite, a sua richiesta, all'atto della consegna dei lavori.

L'esame e verifica da parte della Direzione dei Lavori dei progetti delle varie strutture in cemento armato non esonera in alcun modo l'Appaltatore dalle responsabilità ad essa derivanti per legge e per le precise pattuizioni del contratto, restando contrattualmente stabilito che, malgrado i controlli di ogni genere eseguiti dalla Direzione dei Lavori nell'esclusivo interesse della Stazione Appaltante, l'Appaltatore stesso rimane unico e completo responsabile delle opere, sia per quanto ha rapporto con la loro progettazione e calcolo, che per la qualità dei materiali e la loro esecuzione; di conseguenza egli dovrà rispondere degli inconvenienti che avessero a verificarsi, di qualunque natura, importanza e conseguenza essi potessero risultare.

La responsabilità verrà invece lasciata piena e completa all'Appaltatore, anche per ciò che concerne forma, dimensioni e risultanze di calcoli, quando si tratti di appalti nei quali venga ammessa la presentazione da parte dell'Appaltatore del progetto esecutivo delle opere in cemento armato.

Tale responsabilità non cessa per effetto di revisioni o eventuali modifiche suggerite dalla Stazione Appaltante o dai suoi organi tecnici ed accettate dall'Appaltatore.

Avvenuto il disarmo, la superficie delle opere sarà regolarizzata con malta cementizia: l'applicazione si farà

previa pulitura e lavatura delle superfici delle gettate e la malta dovrà essere ben conguagliata con cazzuola e fratazzo, con l'aggiunta di opportuno spolvero di cemento puro.

CAPITOLO 3

COSTRUZIONE DELLE CONDOTTE IN GENERE

Art. 3.1 MOVIMENTAZIONE E POSA DELLE TUBAZIONI

3.1.1 Generalità

Nella costruzione delle condotte costituenti l'opera oggetto del presente appalto, saranno osservate le vigenti Norme tecniche:

- la normativa del Ministero dei lavori pubblici;
- le disposizioni in materia di sicurezza igienica e sanitaria di competenza del Ministero della sanità;
- le norme specifiche concernenti gli impianti fissi antincendio di competenza del Ministero dell'interno;
- le prescrizioni di legge e regolamentari in materia di tutela delle acque e dell'ambiente dall'inquinamento;
- le speciali prescrizioni in vigore per le costruzioni in zone classificate sismiche, allorché le tubazioni siano impiegate su tracciati che ricadano in dette zone;
- altre eventuali particolari prescrizioni, purché non siano in contrasto con la normativa vigente, in vigore per specifiche finalità di determinati settori come quelle disposte dalle Ferrovie dello Stato per l'esecuzione di tubazioni in parallelo con impianti ferroviari ovvero di attraversamento degli stessi.

Le prescrizioni di tutto l'articolo "Movimentazione e Posa delle Tubazioni" si applicano a tutte le tubazioni in generale; si applicano anche ad ogni tipo delle tubazioni di cui agli articoli seguenti di questo capitolo, tranne per quanto sia incompatibile con le specifiche norme per esse indicate.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

3.1.2 Movimentazione delle tubazioni

1) Carico, trasporto e scarico

Il carico, il trasporto con qualsiasi mezzo (ferrovia, nave, automezzo), lo scarico e tutte le manovre in genere, dovranno essere eseguiti con la maggiore cura possibile adoperando mezzi idonei a seconda del tipo e del diametro dei tubi ed adottando tutti gli accorgimenti necessari al fine di evitare rotture, incrinature, lesioni o danneggiamenti in genere ai materiali costituenti le tubazioni stesse ed al loro eventuale rivestimento.

Pertanto si dovranno evitare urti, inflessioni e sporgenze eccessive, strisciamenti, contatti con corpi che possano comunque provocare deterioramento o deformazione dei tubi. Nel cantiere dovrà predisporsi quanto occorra (mezzi idonei e piani di appoggio) per ricevere i tubi, i pezzi speciali e gli accessori da installare.

2) Accatastamento e deposito

L'accatastamento dovrà essere effettuato disponendo i tubi a cataste in piazzole opportunamente dislocate lungo il tracciato su un'area piana e stabile protetta al fine di evitare pericoli di incendio, riparate dai raggi solari nel caso di tubi soggetti a deformazioni o deterioramenti determinati da sensibili variazioni termiche.

La base delle cataste dovrà poggiare su tavole opportunamente distanziate o su predisposto letto di appoggio.

L'altezza sarà contenuta entro i limiti adeguati ai materiali ed ai diametri, per evitare deformazioni nelle tubazioni di base e per consentire un agevole prelievo.

I tubi accatastati dovranno essere bloccati con cunei onde evitare improvvisi rotolamenti; provvedimenti di protezione dovranno, in ogni caso, essere adottati per evitare che le testate dei tubi possano subire danneggiamenti di sorta.

Per tubi deformabili le estremità saranno rinforzate con crociere provvisionali.

I giunti, le guarnizioni, le bullonerie ed i materiali in genere, se deteriorabili, dovranno essere depositati, fino al momento del loro impiego, in spazi chiusi entro contenitori protetti dai raggi solari o da sorgenti di calore, dal contatto con olii o grassi e non sottoposti a carichi.

Le guarnizioni in gomma (come quelle fornite a corredo dei tubi di ghisa sferoidale) devono essere

immagazzinate in locali freschi ed in ogni caso riparate dalle radiazioni ultraviolette, da ozono. Saranno conservate nelle condizioni originali di forma, evitando cioè la piegatura ed ogni altro tipo di deformazione.

Non potranno essere impiegate guarnizioni che abbiano subito, prima della posa, un immagazzinamento superiore a 36 mesi.

3.1.3 Scavo per la tubazione

1) Apertura della pista

Per la posa in opera della tubazione l'Appaltatore dovrà anzitutto provvedere all'apertura della pista di transito che occorra per consentire il passaggio, lungo il tracciato, dei mezzi necessari alla installazione della condotta.

A tal fine sarà spianato il terreno e, là dove la condotta dovrà attraversare zone montuose con tratti a mezza costa, sarà eseguito il necessario sbancamento; in alcuni casi potranno anche doversi costruire strade di accesso. L'entità e le caratteristiche di dette opere provvisorie varieranno in funzione del diametro e del tipo di tubazioni nonché della natura e delle condizioni del terreno.

2) Scavo e nicchie

Nello scavo per la posa della condotta si procederà di regola da valle verso monte ai fini dello scolo naturale delle acque che si immettono nei cavi.

Lo scavo sarà di norma eseguito a pareti verticali con una larghezza eguale almeno a DN + 100 cm (dove DN è il diametro nominale della tubazione, in centimetri), per una larghezza di scavo di 2,20 m, per profondità compreso tra 3,00 a 4,50 m.

Quando la natura del terreno lo richieda potrà essere autorizzato dalla Direzione dei Lavori uno scavo a sezione trapezia con una determinata pendenza della scarpa, ma con il fondo avente sempre la larghezza sopra indicata, a salvaguardia dell'incolumità degli operai.

Il terreno di risulta dallo scavo sarà accumulato dalla parte opposta - rispetto alla trincea - a quella in cui sono stati o saranno sfilati i tubi, allo scopo di non intralciare il successivo calo dei tubi stessi.

Le pareti della trincea finita saranno sostenute da paratie a palancole metalliche infisse e pannelli a casseri. Il fondo dello scavo dovrà essere stabile ed accuratamente livellato prima della posa della tubazione in modo da evitare gibbosità ed avvallamenti e consentire l'appoggio uniforme dei tubi per tutta la loro lunghezza.

Questa regolarizzazione del fondo potrà ottenersi con semplice spianamento se il terreno è sciolto o disponendo uno strato di terra o sabbia ben costipata se il terreno è roccioso.

Le profondità di posa dei tubi sono indicate sui profili longitudinali delle condotte mediante "livellette" determinate in sede di progetto oppure prescritte dalla Direzione dei Lavori.

Saranno predisposte, alle prevedibili distanze dei giunti, opportune nicchie, sufficienti per potere eseguire regolarmente nello scavo tutte le operazioni relative alla formazione dei giunti.

Per tutto il tempo in cui i cavi dovranno rimanere aperti per la costruzione delle condotte, saranno ad esclusivo carico dell'Appaltatore tutti gli oneri per armature, esaurimenti di acqua, sgombero del materiale eventualmente franato e la perfetta manutenzione del cavo, indipendentemente dal tempo trascorso dall'apertura dello stesso e dagli eventi meteorici verificatisi, ancorché eccezionali.

L'avanzamento degli scavi dovrà essere adeguato all'effettivo avanzamento della fornitura dei tubi; pertanto, gli scavi per posa condotte potranno essere sospesi a giudizio insindacabile della Direzione dei Lavori qualora la costruzione della condotta già iniziata non venga sollecitamente completata in ogni sua fase, compresa la prova idraulica ed il rinterro.

3.1.4 Posa della tubazione

1) Sfilamento dei tubi

Col termine "sfilamento" si definiscono le operazioni di trasporto dei tubi in cantiere, dalla catasta a piè d'opera lungo il tracciato, ed il loro deposito ai margini della trincea di scavo.

In genere converrà effettuare lo sfilamento prima dell'apertura dello scavo sia per consentire un migliore accesso dei mezzi di trasporto e movimentazione sia per una più conveniente organizzazione della posa.

I tubi prelevati dalle cataste predisposte verranno sfilati lungo l'asse previsto per la condotta, allineati con le testate vicine l'una all'altra, sempre adottando tutte le precauzioni necessarie (con criteri analoghi a quelli indicati per lo scarico ed il trasporto) per evitare danni ai tubi ed al loro rivestimento.

I tubi saranno depositati lungo il tracciato sul ciglio dello scavo, dalla parte opposta a quella in cui si trova o si prevede di mettere la terra scavata, ponendo i bicchieri nella direzione prevista per il montaggio e curando che i tubi stessi siano in equilibrio stabile per tutto il periodo di permanenza costruttiva.

2) Posa in opera dei tubi

Prima della posa in opera i tubi, i giunti ed i pezzi speciali dovranno essere accuratamente controllati, con particolare riguardo alle estremità ed all'eventuale rivestimento, per accertare che nel trasporto o nelle operazioni di carico e scarico non siano stati danneggiati; quelli che dovessero risultare danneggiati in modo tale da compromettere la qualità o la funzionalità dell'opera dovranno essere scartati e sostituiti. Nel caso in cui il danneggiamento abbia interessato l'eventuale rivestimento si dovrà procedere al suo ripristino.

Per il sollevamento e la posa dei tubi in scavo, in rilevato o su appoggi, si dovranno adottare gli stessi criteri usati per le operazioni precedenti (di trasporto, ecc.) con l'impiego di mezzi adatti a seconda del tipo e del diametro, onde evitare il deterioramento dei tubi ed in particolare delle testate e degli eventuali rivestimenti protettivi.

Nell'operazione di posa dovrà evitarsi che nell'interno delle condotte penetrino detriti o corpi estranei di qualunque natura e che venga comunque danneggiata la loro superficie interna; le estremità di ogni tratto di condotta in corso d'impianto devono essere comunque chiuse con tappo di legno, restando vietato effettuare tali chiusure in modo diverso.

La posa in opera dovrà essere effettuata da personale specializzato.

I tubi con giunto a bicchiere saranno di norma collocati procedendo dal basso verso l'alto e con bicchieri rivolti verso l'alto per facilitare l'esecuzione delle giunzioni. Per tali tubi, le due estremità verranno pulite con una spazzola di acciaio ed un pennello, eliminando eventuali grumi di vernice ed ogni traccia di terra o altro materiale estraneo.

La posa in opera dei tubi sarà effettuata sul fondo del cavo spianato e livellato, eliminando ogni asperità che possa danneggiare tubi e rivestimenti.

Il letto di posa - che non è necessario nel caso di terreno sciolto e lo è invece nel caso di terreni rocciosi - consisterà, nei casi in cui è prescritto dalla Direzione dei Lavori per costituire un supporto continuo della tubazione, in uno strato, disteso sul fondo dello scavo, di materiale incoerente - come sabbia o terra non argillosa sciolta e vagliata e che non contenga pietruzze - di spessore non inferiore a 10 cm misurati sotto la generatrice del tubo che vi verrà posato.

Se i tubi vanno appoggiati su un terreno roccioso e non è possibile togliere tutte le asperità, lo spessore del letto di posa dovrà essere convenientemente aumentato.

Ove si renda necessario costituire il letto di posa o impiegare per il primo rinterro materiali diversi da quelli provenienti dallo scavo, dovrà accertarsi la possibile insorgenza di fenomeni corrosivi adottando appropriate contromisure.

In nessun caso si dovrà regolarizzare la posizione dei tubi nella trincea utilizzando pietre o mattoni od altri appoggi discontinui.

Il piano di posa - che verrà livellato con appositi traguardi in funzione delle "livellette" di scavo (apponendo e quotando dei picchetti sia nei punti del fondo della fossa che corrispondono alle verticali dei cambiamenti di pendenza e di direzione della condotta, sia in punti intermedi, in modo che la distanza tra picchetto e picchetto non superi 15 metri) dovrà garantire una assoluta continuità di appoggio e, nei tratti in cui si temano assestamenti, si dovranno adottare particolari provvedimenti quali: impiego di giunti adeguati, trattamenti speciali del fondo della trincea o, se occorre, appoggi discontinui stabili, quali selle o mensole.

In quest'ultimo caso la discontinuità di contatto tra tubo e selle sarà assicurata dall'interposizione di materiale idoneo.

Nel caso specifico di tubazioni metalliche dovranno essere inserite, ai fini della protezione catodica, in corrispondenza dei punti d'appoggio, membrane isolanti.

Nel caso di posa in terreni particolarmente aggressivi la tubazione di ghisa sferoidale sarà protetta esternamente con manicotto in polietilene, dello spessore di $20 \div 40$ mm, applicato in fase di posa della condotta.

Per i tubi costituiti da materiali plastici dovrà prestarsi particolare cura ed attenzione quando le manovre di cui al paragrafo "*Movimentazione delle tubazioni*" ed a questo dovessero effettuarsi a temperature inferiori a 0 °C, per evitare danneggiamenti.

I tubi che nell'operazione di posa avessero subito danneggiamenti dovranno essere riparati così da ripristinare la completa integrità, ovvero saranno definitivamente scartati e sostituiti, secondo quanto precisato nel primo capoverso di questo paragrafo al punto 2.

Ogni tratto di condotta posata non deve presentare contropendenze in corrispondenza di punti ove non siano previsti organi di scarico e di sfiato.

La posizione esatta in cui devono essere posti i raccordi o pezzi speciali e le apparecchiature idrauliche deve essere riconosciuta o approvata dalla Direzione dei Lavori. Quindi resta determinata la lunghezza dei diversi tratti di tubazione continua, la quale deve essere formata col massimo numero possibile di tubi interi, così da ridurre al minimo il numero delle giunture.

E' vietato l'impiego di spezzoni di tubo non strettamente necessari.

Durante l'esecuzione dei lavori di posa debbono essere adottati tutti gli accorgimenti necessari per evitare danni agli elementi di condotta già posati.

Si impedirà quindi con le necessarie cautele durante i lavori e con adeguata sorveglianza nei periodi di sospensione, la caduta di pietre, massi, ecc. che possano danneggiare le tubazioni e gli apparecchi.

Con opportune arginature e deviazioni si impedirà che le trincee siano invase dalle acque piovane e si eviterà parimenti, con rinterri parziali eseguiti a tempo debito senza comunque interessare i giunti, che, verificandosi nonostante ogni precauzione la inondazione dei cavi, le condotte che siano vuote e chiuse agli estremi possano essere sollevate dalle acque.

Ogni danno di qualsiasi entità che si verificasse in tali casi per mancanza di adozione delle necessarie cautele è a carico dell'Appaltatore.

3) Posa in opera dei pezzi speciali e delle apparecchiature idrauliche.

I pezzi speciali e le apparecchiature idrauliche saranno collocati seguendo tutte le prescrizioni prima indicate per i tubi.

I pezzi speciali saranno in perfetta coassialità con i tubi.

Gli organi di manovra (saracinesche di arresto e di scarico, sfiati, gruppi per la prova di pressione, ecc.) e i giunti isolanti - che è conveniente prima preparare fuori opera e poi montare nelle tubazioni - verranno installati, seguendo tutte le prescrizioni prima indicate per i tubi, in pozzetti o camerette in muratura accessibili e drenate dalle acque di infiltrazione in modo che non siano a contatto con acqua e fango.

Fra gli organi di manovra ed eventuali muretti di appoggio verranno interposte lastre di materiale isolante. Nei casi in cui non è possibile mantenere le camerette sicuramente e costantemente asciutte, le apparecchiature suddette saranno opportunamente rivestite, operando su di esse prima della loro installazione e successivamente sulle flange in opera.

Parimenti saranno rivestiti, negli stessi casi o se si tratta di giunti isolanti interrati, i giunti medesimi.

Le saracinesche di arresto avranno in genere lo stesso diametro della tubazione nella quale debbono essere inserite e saranno collocate nei punti indicati nei disegni di progetto o dalla Direzione dei Lavori.

Le saracinesche di scarico saranno collocate comunque - sulle diramazioni di pezzi a T o di pezzi a croce - nei punti più depressi della condotta tra due tronchi (discesa - salita), ovvero alla estremità inferiore di un tronco isolato.

Gli sfiati automatici saranno collocati comunque - sulle diramazioni di pezzi a T, preceduti da una saracinesca e muniti di apposito rubinetto di spurgo - nei punti culminanti della condotta tra due tronchi (salita - discesa) o alla estremità superiore di un tronco isolato ovvero alla sommità dei sifoni.

4) Giunzioni dei pezzi speciali flangiati e delle apparecchiature idrauliche con la tubazione.

Il collegamento dei pezzi speciali flangiati o delle apparecchiature idrauliche con la tubazione è normalmente eseguito con giunto a flangia piena consistente nella unione, mediante bulloni, di due flange poste alle estremità dei tubi o pezzi speciali o apparecchiature da collegare, tra le quali è stata interposta una guarnizione ricavata da piombo in lastra di spessore non minore di 5 mm o una guarnizione in gomma telata.

Le guarnizioni avranno la forma di un anello piatto il cui diametro interno sarà uguale a quello dei tubi da congiungere e quello esterno uguale a quello esterno del "collarino" della flangia. E' vietato l'impiego di due o più rondelle nello stesso giunto. Quando, per particolati condizioni di posa della condotta, sia indispensabile l'impiego di ringrossi tra le flange, questi debbono essere di ghisa o di ferro e posti in opera con guarnizioni su entrambe le facce. E' vietato ingrassare le guarnizioni.

I dadi dei bulloni saranno stretti gradualmente e successivamente per coppie di bulloni posti alle estremità di uno stesso diametro evitando di produrre anormali sollecitazioni della flangia, che potrebbero provocarne la rottura.

Stretti i bulloni, la rondella in piombo sarà ribattuta energicamente tutto intorno con adatto calcatoio e col martello per ottenere una tenuta perfetta.

5) Prova d'isolamento e protezione catodica

Sulle tubazioni metalliche o con armature metalliche munite di rivestimento protettivo esterno, al termine delle operazioni di completamento e di eventuale ripristino della protezione stessa, saranno eseguite determinazioni della resistenza di isolamento delle tubazioni in opera per tronchi isolati, al fine di controllare la continuità del rivestimento protettivo, procedendo alla individuazione ed all'eliminazione dei punti di discontinuità del rivestimento.

Le tubazioni suddette, nei casi in cui la presenza di correnti vaganti o la natura particolarmente aggressiva dei terreni di posa lascia prevedere elevate possibilità di corrosione, verranno portate in condizioni di immunità cioè tali da neutralizzare ogni fenomeno di corrosione, mediante applicazione della protezione catodica.

A prescindere dal sistema con cui questa verrà eseguita, secondo le prescrizioni della Direzione dei Lavori, sarà nei suddetti casi comunque realizzata la protezione catodica temporanea, per impedire gli eventuali processi iniziali di corrosione che potranno manifestarsi specie nel caso di tempi lunghi intercorrenti fra la posa delle condotte e l'applicazione della protezione catodica.

6) Giunzioni dei tubi

Verificati pendenza ed allineamento si procederà alla giunzione dei tubi, che dovrà essere effettuata da personale specializzato.

Le estremità dei tubi e dei pezzi speciali da giuntare e le eventuali guarnizioni dovranno essere perfettamente pulite.

La giunzione dovrà garantire la continuità idraulica e il comportamento statico previsto in progetto e dovrà essere realizzata in maniera conforme alle norme di esecuzione dipendenti dal tipo di tubo e giunto impiegati nonché dalla pressione di esercizio.

A garanzia della perfetta realizzazione dei giunti dovranno, di norma, essere predisposti dei controlli sistematici con modalità esecutive specificatamente riferite al tipo di giunto ed al tubo impiegato.

Art. 3.2 ATTRAVERSAMENTI E PARALLELISMI

Attraversamenti e parallelismi con ferrovie e simili

Nei casi di interferenza (attraversamenti e parallelismi) di condotte (convoglianti liquidi o gas o sostanze solide minute, polverulente, pastose o in sospensione in veicolo fluido) e di canali con: ferrovie, tranvie extraurbane, filovie extraurbane, funicolari, funivie e impianti similari, saranno osservate le norme UNI e CEI vigenti ed in particolare le prescrizioni del D.M. 04 aprile 2014 n. 137.

Se progettualmente previsti, gli attraversamenti saranno distinti secondo la norma in:

- interrati (al disotto dei binari)
- **superiori** (mediante struttura portante propria ed attraversamenti con appoggio su altri manufatti)
- **inferiori** (realizzati in corrispondenza delle luci libere dei manufatti).

Tutte le condotte dovranno essere intercettabili a monte ed a valle dell'attraversamento. Gli organi di intercettazione dovranno essere ubicati in posizione facilmente accessibile, in modo che possa essere rapido l'intervento per intercettare il flusso in caso di necessità. Tali organi di intercettazione dovranno essere protetti da camerette interrate o pozzetti interrati in modo che la loro manovra possa essere effettuata soltanto da personale addetto.

Si avrà cura inoltre, di predisporre tutti gli elementi accessori previsti dal caso specifico in quanto a tubi di protezione, saracinesche, pozzetti e quant'altro necessario per rendere l'opera completa e funzionale.

Gli attraversamenti **interrati** saranno realizzati con un tracciato della condotta di norma rettilineo e normale all'asse del binario.

In prossimità di opere d'arte e di impianti tecnologici (sostegni trazione elettrica, antenne radio, ecc.) l'attraversamento dovrà essere realizzato in modo tale da non interessare le strutture delle opere d'arte e degli impianti stessi consentendone allo stesso modo l'eventuale esecuzione di lavori di manutenzione o consolidamento. In ogni caso l'attraversamento dovrà risultare a distanza dal filo esterno della struttura più vicina non minore dell'altezza del piano del ferro sul piano di fondazione dell'opera d'arte, con un massimo di 10 m. Nei confronti degli imbocchi delle gallerie va rispettata la distanza di 10 m.

La condotta attraversante dovrà essere contenuta entro un *tubo di protezione* di maggior diametro; se in acciaio dovrà avere uno spessore adeguato alle sollecitazioni da sopportare e comunque non inferiore ai 4 mm. Nel caso di impiego di altri materiali, per il tubo di protezione saranno osservate le norme dettate dal D.M. 04 aprile 2014, n.137. La pendenza di posa dovrà essere uniforme e non inferiore al due per mille in direzione del pozzetto di valle.

La condotta attraversante dovrà essere interrata — per una estesa corrispondente alla distanza tra le due rotaie estreme più 3 m al di là di entrambe — a una profondità tale che l'altezza del terreno sovrastante il tubo di protezione risulti di almeno 1,20 m e che il punto più alto del tubo stesso si trovi ad almeno 2 m al di sotto del piano del ferro (della rotaia più bassa se vi è sopraelevazione del binario).

Se nella in tale estesa ricadono cunette, la profondità di interramento rispetto al fondo d'essa dovrà risultare di almeno 0,80 m. Oltre detta estesa e fino a 20 m dalle rotaie estreme, la profondità di interramento non dovrà essere minore di 0,80 m. Andrà inoltre rispettata una profondità di almeno 0,30 m rispetto alle condotte d'acqua ed ai cavi interrati, di pertinenza delle ferrovie.

Nel caso di attraversamenti **superiori** con struttura portante propria dovranno essere progettati e realizzati con l'esclusione di strutture metalliche, e con un passaggio che consenta l'ispezione della tubazione (o delle tubazioni) la cui disposizione dovrà essere tale da renderne anche agevole la manutenzione.

Non sarà ammesso l'attraversamento di marciapiedi di stazione, di piani caricatori o di altre installazioni

fisse.

Nei casi di condotte con struttura portante propria quest'ultima dovrà assicurare un'altezza libera sul piano del ferro di almeno:

- a): 7,2 m per le ferrovie elettrificate a 25 kV C.A.;
- b): 7,0 m per tutte le altre ferrovie.

In ogni caso dovrà essere rispettato il franco elettrico minimo indicato nella CEI EN 50119.

Negli attraversamenti sopra alle gallerie, sia interrati che allo scoperto, quando lo spessore del terreno esistente tra il piano di posa della condotta e l'estradosso del rivestimento della galleria risulti inferiore a 5 m dovrà essere previsto il tubo di protezione indicato in precedenza da estendersi da ambo i lati della galleria di almeno 10 m.

Gli attraversamenti **inferiori**, cioè quelli realizzati in corrispondenza delle luci libere dei manufatti, saranno ammessi soltanto se compatibili con la funzione dei manufatti, secondo precisa indicazione della Direzione Lavori.

La profondità di interramento non dovrà essere inferiore a 0,80 m rispetto al piano di campagna o al piano stradale. Di norma la condotta dovrà essere posata preferibilmente in corrispondenza della mezzeria della luce libera dell'opera d'arte. Non sarà ammesso spingere gli scavi per l'interramento di condotte al di sotto dei piani di posa delle fondazioni di dette opere.

Se progettualmente prevista, si procederà alla costruzione di condotte in parallelismo alle ferrovie, poste in opera a distanze, profondità e caratteristiche tecniche dettate dalla normativa citata. Detti **parallelismi**, dovranno essere posate parallelamente al binario, ad una distanza tale da non costituire pregiudizio alla sede ed alle opere ferroviarie; tale distanza, non dovrà essere inferiore a 10 m dalla più vicina rotaia e dovrà essere misurata ortogonalmente all'asse del binario. Contemporaneamente dovrà essere rispettata la distanza di 3 m dal piede del rilevato o 5 m dal ciglio della trincea, anche se ciò comporta un aumento della sopracitata distanza di 10 m. In ogni caso la distanza tra la generatrice esterna della condotta e il piede del rilevato, o il ciglio della trincea, non dovrà essere inferiore alla profondità del piano di posa della condotta stessa, rispetto al piano di campagna.

Ultimato l'attraversamento o il parallelismo, si dovrà procedere:

- 1) ad effettuare tutte le prove e verifiche in contraddittorio tra le parti (Appaltatore, Direzione Lavori ed Ente responsabile della ferrovia) per accertare la rispondenza fra progetto approvato ed esecuzione degli impianti;
- 2) a redigere apposito Verbale di regolare esecuzione che dovrà essere firmato da funzionari responsabili delle parti.

Negli attraversamenti o parallelismi di cui è prevista la protezione catodica, trascorsi centottanta giorni dalla data di emissione del Verbale di regolare esecuzione, si procederà alla redazione in contraddittorio, a firma di funzionari responsabili delle parti, in duplice copia, di un altro verbale dal quale dovrà risultare che l'impianto di protezione catodica è funzionante, ben dimensionato e che la condotta ed il relativo tubo di protezione, in relazione alle caratteristiche dell'elettrodo utilizzato, siano mantenuti ad un potenziale tale da garantire una protezione equivalente a quella garantita da un valore di almeno 0,85 Volt negativi con l'utilizzo di elettrodo Cu-CuSO₄.

Il rilievo del potenziale di protezione catodica deve essere effettuato in conformità delle norme vigenti ed in particolare secondo la norma UNI 11094.

Attraversamenti di corsi d'acqua e strade

Si dovranno predisporre manufatti di attraversamento ogni volta che la condotta incontri:

- un corso d'acqua naturale o artificiale;
- una strada a traffico pesante.

Negli attraversamenti di corsi di acqua importanti, è in generale necessario effettuare il sovrappassaggio mediante piccoli ponti progettati per il sostegno della tubazione, oppure servirsi come appoggio di un ponte esistente. Nel caso di piccoli corsi d'acqua, come torrenti, sarà effettuato un sottopassaggio ricavato in una briglia del torrente, che abbia sufficiente robustezza.

In genere, in corrispondenza all'attraversamento di un corso d'acqua si ha un punto basso della condotta e in tale punto è conveniente sistemare un pozzetto.

Gli attraversamenti stradali saranno in genere posti in cunicolo, per non essere costretti, in caso di rottura del tubo, a manomettere la sede stradale per la riparazione; è in ogni caso necessario, quando non sia conveniente costruire un vero e proprio cunicolo, disporre la condotta in un tubo più grande (tubo guaina) od in un tombino, in modo da proteggerla dai sovraccarichi e dalle vibrazioni trasmesse dal traffico sul piano stradale e permettere l'eventuale sfilamento. Gli organi di intercettazione verranno posti in pozzetti prima e dopo l'attraversamento per facilitare eventuali riparazioni della condotta.

Le condotte contenute in tubi-guaina (es. negli attraversamenti stradali) saranno isolate elettricamente inserendo zeppe e tasselli - rispettivamente alle estremità del tubo-guaina e nella intercapedine fra condotta e tubo-gomma - di materiale elettricamente isolante e meccanicamente resistente. I tasselli non dovranno occupare più di un quarto dell'area dell'intercapedine e saranno in numero tale che in nessun caso i tubi possano venire a contatto per flessione.

I tubi-guaina saranno dotati di adeguato rivestimento esterno; i tubi di sfiato dei tubi-guaina saranno realizzati in modo da non avere contatti metallici con le condotte.

Distanze della condotta da esistenti tubazioni e cavi interrati

La condotta sarà mantenuta alla massima distanza possibile dalle altre tubazioni (gasdotti, ecc.) e cavi (elettrici, telefonici, ecc.) interrati.

Per le condotte urbane:

- nei parallelismi, se eccezionalmente si dovesse ridurre la distanza a meno di 30 cm, verrà controllato anzitutto il rivestimento con particolare cura mediante un rilevatore a scintilla per verificarne in ogni punto la continuità e sarà poi eseguito un rivestimento supplementare (come quello per la protezione dei giunti nei tubi di acciaio); nella eventualità che possano verificarsi contatti fra le parti metalliche, saranno inseriti tasselli di materiale isolante (es. tela bachelizzata, PVC, ecc.) dello spessore di almeno 1 cm;
- negli incroci verrà mantenuta una distanza di almeno 30 cm; se eccezionalmente si dovesse ridurre, sarà eseguito un rivestimento supplementare come sopra per una estensione di 10 m a monte e 10 m a valle; se esiste il pericolo di contatto fra le parti metalliche (es. per assestamenti del terreno), verrà interposta una lastra di materiale isolante con spessore di almeno 1 cm, larghezza eguale a 2 ÷ 3 volte il diametro del tubo maggiore e lunghezza a seconda della posizione della condotta rispetto alle altre tubazioni o cavi.

Analogamente si procederà per le condotte extraurbane, nei parallelismi e negli incroci, quando la distanza di cui sopra si riduca a meno di 75 cm.

Attraversamenti di pareti e blocchi in calcestruzzo

La tubazione, per la parte in cui attraversa pareti, blocchi di ancoraggio o briglie in calcestruzzo ecc., conserverà il rivestimento protettivo e verrà tenuta ad una distanza di almeno 10 cm dagli eventuali ferri di armatura.

Se in corrispondenza all'attraversamento deve essere realizzato l'ancoraggio, si ricorrerà a cerniere protette con idonee vernici isolanti (es. epossidiche) mentre il tubo sarà sempre dotato di rivestimento.

Sostegni per condotte aeree

Fra la tubazione e le sellette di appoggio saranno interposte lastre o guaine di materiale isolante (es. polietilene, gomma telata, ecc.) sia nei punti in cui la condotta è semplicemente appoggiata che in quelli in cui la condotta è ancorata ai sostegni mediante collare di lamiera e zanche di ancoraggio.

Art. 3.3 PROVA IDRAULICA DELLA CONDOTTA

Puntellamenti ed ancoraggi per la prova

Prima di procedere al riempimento della condotta per la prova idraulica deve essere eseguito il rinfianco ed il rinterro parziale della condotta in modo da impedire che la pressione interna di prova provochi lo spostamento dei tubi; ed i raccordi corrispondenti alle estremità, alle curve planimetriche ed altimetriche, alle diramazioni ed alle variazioni di diametro devono essere opportunamente puntellati.

Prima di eseguire gli ancoraggi definitivi in muratura, (ma di quelli che venissero costruiti si dovrà accettare la stagionatura, prima della prova) saranno effettuati puntellamenti provvisori sulle pareti dello scavo a mezzo di carpenteria in legno o in ferro (p.e. puntelli in ferro telescopici regolabili in lunghezza, martinetti idraulici) per facilitare lo smontaggio della condotta nel caso di eventuali perdite.

Per equilibrare la spinta longitudinale sul terminale della condotta può rendersi talvolta opportuno costruire un blocco trasversale in calcestruzzo; in tale caso si provvederà nel blocco stesso un foro per il successivo passaggio, in prosecuzione, della condotta.

Nel caso di raccordi collegati a valvola di interruzione in linea, i raccordi stessi devono essere opportunamente ancorati mediante apposite staffe metalliche collegate alle murature del pozzetto, allo scopo di contrastare le spinte idrostatiche, derivanti dalla differenza di pressione monte-valle della valvola, generate dalla sua chiusura.

Per i blocchi di ancoraggio sarà generalmente adottata la forma a pianta trapezia ed altezza costante, con i lati maggiore e minore del trapezio di base adiacenti rispettivamente alla parete verticale dello scavo ed alla condotta.

I blocchi di ancoraggio destinati ad essere sollecitati esclusivamente a compressione saranno realizzati in calcestruzzo cementizio non armato dosato a 300 kg di cemento per 1 m³ di inerti.

I blocchi destinati a sollecitazione di trazione e presso-flessione saranno realizzati in calcestruzzo cementizio armato.

Le dimensioni dei blocchi saranno quelle di progetto o stabilite dalla Direzione dei Lavori.

Tronchi di condotta - Preparazione della prova

La condotta verrà sottoposta a prova idraulica per tronchi via via completati, della lunghezza ognuno di circa 6,00 m.

Si farà in modo di provare tronchi aventi alle estremità nodi o punti caratteristici della condotta, quali incroci, diramazioni, sfiati, scarichi, così da avere a disposizione i raccordi ai quali collegare le apparecchiature occorrenti alla prova idraulica; in questo caso, quando manchino saracinesche di linea, può essere realizzato il sezionamento del tronco da collaudare interponendo temporaneamente, fra due flange piane, un disco di acciaio.

Se invece le estremità delle condotte non sono costituite da raccordi utilizzabili in via definitiva, occorre chiudere provvisoriamente le estremità della condotta con gli opportuni raccordi a flangia (tazza o imbocco) e relativi piatti di chiusura aventi un foro filettato.

L'Appaltatore eseguirà le prove dei tronchi di condotta posata al più presto possibile e pertanto dovrà far seguire immediatamente alla esecuzione delle giunzioni quella degli ancoraggi provvisori e di tutte le operazioni per le prove.

La Direzione dei Lavori potrà prescrivere dispositivi speciali (come l'esecuzione di blocchi di calcestruzzo - da rimuovere in tutto o in parte dopo le prove per eseguire il tratto di tubazione corrispondente alla interruzione - con tubi di comunicazione tra l'uno e l'altro muniti di saracinesche per il passaggio dell'acqua).

L'Appaltatore dovrà provvedere a sue cure e spese a tutto quanto è necessario (acqua per il riempimento delle tubazioni, piatti di chiusura, pompe, rubinetti, raccordi, guarnizioni e manometro registratore ufficialmente tarato) per l'esecuzione delle prove e per il loro controllo da parte della Direzione dei Lavori.

Saranno inoltre effettuati, a cura e spese dell'Appaltatore, la provvista di materiali e tutti i lavori occorrenti per sbatacchiature e ancoraggi provvisori delle estremità libere della condotta e dei relativi piatti di chiusura durante le prove, curando l'esecuzione di tali operazioni sì da non dare luogo a danneggiamenti della tubazione e di altri manufatti.

Disinfezione della condotta

Per ogni tratto collocato, e comunque per lunghezza non superiore di norma a 500 m, debbono essere posti 20 kg di grassello di calce nell'interno della condotta per la sua disinfezione.

L'acqua di calce sarà scaricata durante i lavaggi.

La Direzione dei Lavori potrà prescrivere altro sistema di disinfezione.

L'immissione del grassello o l'adozione di altri sistemi di disinfezione dovranno essere ripetuti tutte le volte che debbano rinnovarsi le prove delle condutture.

Riempimento della condotta

Si riempirà la condotta con acqua immessa preferibilmente dall'estremità a quota più bassa del tronco, per assicurare il suo regolare deflusso e per la fuoriuscita dell'aria dall'estremità alta; il riempimento sarà sempre fatto molto lentamente per assicurare la completa evacuazione dell'aria.

Il piatto di chiusura del raccordo sull'estremità alta deve essere forato nel punto più alto corrispondente alla sezione interna del tubo e munito di rubinetto di spurgo d'aria.

In modo analogo occorre assicurare lo spurgo dell'aria in eventuali punti di colmo (sfiati) intermedi della tratta da provare e, in alcuni casi, in corrispondenza delle variazioni di diametro. L'immissione dell'acqua deve essere fatta ad una discreta pressione (2-3 bar almeno) collegando la condotta alla rete già in esercizio; nel caso di condotte di adduzione esterne si può prelevare l'acqua dai tronchi già collaudati o da vasche, pozzi, corsi d'acqua, mediante pompe munite di valvola di fondo. Nella fase di riempimento occorre tenere completamente aperti i rubinetti di sfiato.

Si lascerà fuoriuscire l'acqua dai rubinetti per il tempo necessario affinché all'interno della condotta non vi siano residue sacche d'aria (le quali renderebbero praticamente impossibile la messa in pressione).

In caso di necessità possono realizzarsi punti di sfiato mediante foratura della condotta in corrispondenza della generatrice superiore e posa in opera di "staffe a collare".

Collocazione della pompa e messa in pressione

Ad avvenuto riempimento della condotta saranno lasciati aperti per un certo tempo gli sfiati per consentire l'uscita di ogni residuo d'aria e sarà poi disposta, preferibilmente nel punto più basso di essa, la pompa di prova a pistone o a diaframma (del tipo manuale o a motore) munita del relativo manometro registratore ufficialmente

tarato. La pompa, se posta nel punto di immissione principale (collegamento alla rete, ecc.), va collegata mediante apposita diramazione e relative valvole di intercettazione, allo scopo di poter effettuare ulteriori riempimenti della condotta senza perdite di tempo per disconnessioni temporanee.

Agendo sulla leva della pompa (o sull'accensione del motore) si metterà la condotta in carico fino ad ottenere la pressione di prova stabilita, che sarà raggiunta gradualmente, in ragione di non più di 1 bar al minuto primo.

Specie nel periodo estivo e per le condotte sottoposte ai raggi solari nelle ore più calde della giornata, si controllerà il manometro, scaricando se necessario con l'apposita valvola della pompa l'eventuale aumento di pressione oltre i valori stabiliti.

Dopo il raggiungimento della pressione richiesta, verrà ispezionata la condotta per accertare che non vi siano in atto spostamenti dei puntelli o degli ancoraggi in corrispondenza dei punti caratteristici della condotta.

Le due prove

La prova idraulica della condotta consisterà di due prove, una a giunti scoperti a condotta seminterrata e l'altra a cavo semichiuso, che saranno eseguite ad una pressione pari a 1,5-2 volte la pressione di esercizio.

Alle prove la Direzione dei Lavori potrà richiedere l'assistenza della ditta fornitrice dei tubi.

Durante il periodo nel quale la condotta sarà sottoposta alla prima prova, la Direzione dei Lavori, in contraddittorio con l'Appaltatore, eseguirà la visita accurata di tutti i giunti che, all'inizio della prova, debbono risultare puliti e perfettamente asciutti.

Il buon esito della prima prova sarà dimostrato dai concordi risultati dell'esame dei giunti e dal grafico del manometro registratore; non potrà perciò accettarsi una prova in base alle sole indicazioni, ancorché positive, del manometro registratore, senza che sia stata effettuata la completa ispezione di tutti i giunti.

Qualora la prima prova non abbia dato risultati conformi alle prescrizioni relative ai singoli tipi di tubi, essa dovrà essere ripetuta.

Dopo il risultato favorevole della prima prova, si procederà alla seconda prova a cavo semichiuso, il cui buon esito risulterà dal grafico del manometro registratore.

Se questa seconda prova non darà risultati conformi alle prescrizioni relative ai singoli tipi di tubo, il cavo dovrà essere riaperto, i giunti revisionati o rifatti e il rinterro rinnovato. La prova verrà quindi ripetuta con le stesse modalità di cui sopra.

La sostituzione dei tubi che risultassero rotti o si rompessero durante le prove è a totale carico dell'Appaltatore, sia per quanto riguarda la fornitura del materiale che per la manodopera e l'attrezzatura occorrenti.

Dopo il risultato favorevole della 1° e 2° prova, per le quali la Direzione dei Lavori redigerà "verbale di prova idraulica", verrà completato il rinterro.

Art. 3.4

Rinfianco e rinterro parziale (cavallottamento)

Al termine delle operazioni di giunzione relative a ciascun tratto di condotta ed eseguiti gli ancoraggi, si procederà di norma al rinfianco ed al rinterro parziale dei tubi - per circa 2/3 della lunghezza di ogni tubo, con un cumulo di terra (cavallotto) - sino a raggiungere un opportuno spessore sulla generatrice superiore, lasciando completamente scoperti i giunti.

Modalità particolari dovranno essere seguite nel caso di pericolo di galleggiamento dei tubi o in tutti quei casi in cui lo richieda la stabilità dei cavi.

Il rinterro verrà effettuato con materiale proveniente dagli scavi, selezionato (privo di sassi, radici, corpi estranei, almeno fino a circa 30 cm sopra la generatrice superiore del tubo) o, se non idoneo, con materiale proveniente da cava di prestito, con le precauzioni di cui al paragrafo "Posa della Tubazione" su sfilamento tubi.

Il materiale dovrà essere disposto nella trincea in modo uniforme, in strati di spessore 20-30 cm, abbondantemente innaffiato e accuratamente costipato sotto e lateralmente al tubo, per ottenere un buon appoggio esente da vuoti e per impedire i cedimenti e gli spostamenti laterali. Per i tubi di grande diametro di tipo flessibile, dovrà essere effettuato in forma sistematica il controllo dello stato di compattazione raggiunto dal materiale di rinterro, secondo le prescrizioni della Direzione dei Lavori.

Ove occorra, il rinfianco potrà essere eseguito in conglomerato cementizio magro.

Saranno in ogni caso osservate le normative UNI nonché le indicazioni del costruttore del tubo.

Rinterro a semichiusura del cavo

Eseguita la prima prova a giunti scoperti si procederà al rinterro dei tratti di condotta ancora scoperti, con le modalità ed i materiali stabiliti nel precedente punto, ed al rinterro completo di tutta la condotta del tronco sino a circa 80 cm sulla generatrice superiore della tubazione, impiegando materiali idonei disposti per strati successivi, spianati ed accuratamente compattati dopo avere eliminato le pietre di maggiori dimensioni.

Rinterro definitivo

Eseguita la prova idraulica si completerà il rinterro con le modalità ed i materiali stabiliti nel precedente punto.

A rinterro ultimato, nei tronchi fuori strada verranno effettuati gli opportuni ricarichi atti a consentire il ripristino del livello del piano di campagna - quale dovrà risultare all'atto del collaudo - dopo il naturale assestamento del rinterro.

Nei tronchi sotto strada si avrà cura di costipare il rinterro, procedendo alle necessarie innaffiature fino al livello del piano di posa della massicciata stradale, raggiungendo un grado di compattazione e di assestamento del rinterro tale per cui, una volta che sia stato effettuato il ripristino della struttura stradale, il piano di calpestio di questa non subisca col tempo e per effetto del traffico anche "pesante" alcuna modifica rispetto all'assetto altimetrico preesistente alle operazioni di posa. Nel caso in cui dovessero verificarsi cedimenti, l'Appaltatore, a sua cura e spese, dovrà procedere alle opportune ed ulteriori opere di compattazione ed al ripristino della struttura stradale (massicciata, binder, strato di usura), fino all'ottenimento della condizione di stabilità.

Art. 3.5 POZZETTI PER APPARECCHIATURE

I pozzetti di calcestruzzo, per l'alloggio delle apparecchiature in genere saranno costruiti in numero e posizione, che risulteranno dai profili altimetrici delle condotte, anche su condotte esistenti, nei punti indicati su ordine della Direzione Lavori: essi avranno in pianta le dimensioni interne e le altezze libere utili corrispondenti ai tipi indicati nell'elenco prezzi di contratto e nei disegni. La platea di fondazione, le pareti e la soletta di copertura, avranno lo spessore riportato nei disegni; il calcestruzzo della platea e delle pareti avrà resistenza caratteristica Rck = 25 N/mm², quello della soletta di copertura Rck = 30 N/mm². La soletta sarà armata con ferro tondo omogeneo del diametro 10-12 mm ad armatura incrociata calcolata a piastra, in appoggio perimetrale, con il sovraccarico determinato dal passaggio di un rullo compressore di 18 tonnellate, considerando, fra quelli possibili, il caso più sfavorevole. In particolare, nella sagomatura dei ferri e nella loro distribuzione, dovrà essere tenuto conto del vano necessario all'accesso del pozzetto, che sarà costituito da un passo d'uomo a chiave, con piastrone e cornice in ghisa, portante superiormente a vista le scritte dell'acquedotto. Detto passo d'uomo, con coperchio a filo del piano stradale, dovrà avere la sezione interna utile di passaggio minima conforme ai disegni di progetto e dovrà consentire in ogni caso l'estrazione dell'organo di manovra contenuto nel pozzetto stesso (saracinesca, ecc.) e dovrà pure resistere ai sovraccarichi citati. La soletta di copertura dovrà avere il ricoprimento di almeno 20 cm di pietrisco ed il piano di fondazione dovrà scendere fino alla quota necessaria ad ottenere l'altezza utile indicata.

Sulla stessa soletta dovranno essere annegati, a filo strada o campagna, i chiusini di ghisa per le manovre dall'esterno delle saracinesche con apposita chiave a croce.

I pezzi speciali e le apparecchiature dovranno essere sostenute da muretti anche in cotto, poggiati sulla platea opportunamente ancorati anche lateralmente contro le spinte orizzontali.

In particolare dovrà porsi cura che nell'interno dei pozzetti i giunti di collegamento siano liberi e staccati dalle murature in modo da consentire facile accesso o smontaggio. Le apparecchiature ed i pezzi speciali alloggiati nei pozzetti dovranno essere collegati tra loro da giunti che ne consentano un rapido smontaggio. I fori di passaggio delle tubazioni attraverso le pareti, saranno stuccati ad assestamento avvenuto con cemento plastico a perfetta tenuta d'acqua o sigillati con speciale giunto waterstop. Le pareti, la platea e la soletta dovranno essere impermeabilizzate tramite la stesura di resine epossidiche o appositi prodotti epossi-cementizi. I pozzetti dovranno risultare ispezionabili e liberi da acqua di qualsiasi provenienza. L'accesso dall'alto sarà permesso da scaletta alla marinara, in ferro zincato tondo del D.N. 20 mm ancorata alla muratura, estesa fra il fondo del pozzetto e la soletta di copertura. Ogni parte metallica scoperta situata entro il pozzetto sarà zincata a caldo mentre le condotte ed i pezzi speciali in acciaio dovranno essere protetti con vernice bituminosa e con due mani di vernice antiruggine. I pozzetti potranno essere ordinati dalla Direzione Lavori con la platea con funzione drenante senza che ciò comporti variazione di prezzo.

Art. 4 COSTRUZIONE DELLE CONDOTTE IN PE

4.1 Norme da osservare

Le tubazioni in PE corrugato saranno in polietilene strutturato ad alta densità, corrugato esternamente e con

parete interna liscia "tipo B" secondo pr EN 13476, realizzato a doppia parete con processo di coestrusione, irrigidito con costolatura anulare; classe di rigidezza circonferenziale SN 8 kN/m², marchiato Piip/a del IIP, con giunzione mediante manicotto e quarnizione di tenuta.

4.2 Movimentazione

1) Trasporto

Nel trasporto dei tubi in PE i piani di appoggio devono essere privi di asperità. I tubi devono essere appoggiati evitando eccessive sporgenze al di fuori del piano di carico.

I tubi in rotoli devono essere appoggiati preferibilmente in orizzontale.

Le imbragature per il fissaggio del carico possono essere realizzate con funi o bande di canapa o di nylon o similari, adottando gli opportuni accorgimenti in modo che i tubi non vengano mai direttamente a contatto con esse per non provocare abrasioni o danneggiamenti.

2) Carico e scarico

Se il carico e lo scarico dai mezzi di trasporto e comunque la movimentazione vengono effettuati con gru o col braccio di un escavatore, i tubi devono essere sollevati nella zona centrale con un bilancino di ampiezza adeguata.

Se queste operazioni vengono effettuate manualmente, si eviterà in ogni modo di fare strisciare i tubi sulle sponde del mezzo di trasporto o comunque su oggetti duri e aguzzi.

3) Accatastamento

Il piano di appoggio dovrà essere livellato ed esente da asperità e soprattutto da pietre appuntite. L'altezza di accatastamento per i tubi in barre non deve essere superiore a 2 m qualunque sia il loro diametro.

Per i tubi in rotoli appoggiati orizzontalmente, l'altezza può essere superiore ai 2 m.

Quando i tubi vengono accatastati all'aperto per lunghi periodi, dovranno essere protetti dai raggi solari.

Nel caso di tubi di grossi diametri (oltre 500 m), le loro estremità saranno armate internamente onde evitare eccessive ovalizzazioni.

4) Raccordi ed accessori

Per questi pezzi (che vengono forniti in genere in appositi imballaggi), se sono forniti sfusi, si dovrà avere cura nel trasporto e nell'immagazzinamento di non ammucchiarli disordinatamente e si dovrà evitare che possano essere deformati o danneggiati per effetto di urti fra di essi o con altri materiali pesanti.

4.3 Posa in opera e rinterro

1) Profondità di posa

La profondità di posa misurata dalla generatrice superiore del tubo in PE stabilita dalla Direzione dei Lavori in funzione dei carichi dovuti a circolazione, del pericolo di gelo e del diametro della tubazione.

In corso di lavoro, nel caso che si verifichino condizioni più gravose di quelle previste dalle norme vigenti e sempre che tali condizioni riguardino tronchi di limitata ampiezza per cui sussista la convenienza economica di lasciare invariati gli spessori previsti in sede di progettazione, si deve procedere ad opera di protezione della canalizzazione tale da ridurre le sollecitazioni sulle pareti del tubo ai valori stabiliti per la classe di spessori prescelta.

Ad esempio, in caso di smottamento o di frana che allarghi notevolmente la sezione della trincea nella parte destinata a contenere la tubazione, si potranno costruire da una parte e dall'altra della tubazione stessa, fino alla quota della generatrice superiore, muretti di pietrame o di calcestruzzo atti a ridurre opportunamente la larghezza della sezione di scavo.

In caso di attraversamento di terreni melmosi o di strade con traffico capace di indurre sollecitazioni di entità dannose per la tubazione, questa si potrà proteggere con una guaina di caratteristiche idonee da determinare di volta in volta anche in rapporto alla natura del terreno.

In caso di altezza di rinterro minore del valore minimo sopra indicato, occorre utilizzare tubi di spessore maggiore o fare assorbire i carichi da manufatti di protezione.

2) Letto di posa

Prima della posa in opera del tubo, sarà steso sul fondo dello scavo uno strato di materiale incoerente, quale sabbia o terra sciolta e vagliata, di spessore non inferiore a 15 cm sul quale verrà posato il tubo che verrà poi rinfiancato quanto meno per 15 cm per lato e ricoperto con lo stesso materiale incoerente per uno spessore non inferiore a 20 cm misurato sulla generatrice superiore.

Il riempimento successivo dello scavo sarà costituito da materiale di cava.

3) Posa della tubazione

L'assemblaggio della condotta può essere effettuato fuori dallo scavo e quindi la posa della condotta avverrà per tratti successivi utilizzando mezzi meccanici.

Prima di effettuare il collegamento dei diversi elementi della tubazione, tubi e raccordi devono essere controllati per eventuali difetti ed accuratamente puliti alle estremità; i tubi inoltre saranno tagliati perpendicolarmente all'asse.

I terminali dei tratti già collegati che per un qualunque motivo debbano rimanere temporaneamente isolati, devono essere chiusi ermeticamente onde evitare l'introduzione di materiali estranei.

Gli accessori interposti nella tubazione come valvole, saracinesche e simili devono essere sorretti in modo da non esercitare alcuna sollecitazione sui tubi.

La Direzione dei Lavori potrà ordinare la posa in opera di opportuni nastri segnaletici sopra la condotta al fine di facilitarne la esatta ubicazione in caso di eventuale manutenzione.

4) Rinterro

Tenuto conto che il tubo, dilatandosi in funzione della temperatura del terreno, assume delle tensioni se bloccato alle estremità prima del riempimento, si dovrà procedere come segue:

- il riempimento (almeno per i primi 50 cm sopra il tubo) dovrà essere eseguito su tutta la condotta, nelle medesime condizioni di temperatura esterna; esso sarà di norma eseguito nelle ore meno calde della giornata;
- si procederà, sempre a zone di 20-30 m avanzando in una sola direzione e possibilmente in salita: si lavorerà su tre tratte consecutive e si eseguirà contemporaneamente il ricoprimento fino a quota 50 cm sul tubo in una zona, il ricoprimento fino a $15 \div 20$ cm sul tubo nella zona adiacente e la posa della sabbia intorno al tubo nella tratta più avanzata;
- si potrà procedere a lavoro finito su tratte più lunghe solo in condizioni di temperatura più o meno costante. Per consentire che il tubo si assesti assumendo la temperatura del terreno, una delle estremità della tratta di condotta dovrà essere mantenuta libera di muoversi e l'attacco ai pezzi speciali e all'altra estremità della condotta dovrà essere eseguito dopo che il riscoprimento è stato portato a 5 ÷ 6 m dal pezzo stesso da collegare.

4.4 Giunzioni e collegamenti

1) Giunzioni

Le giunzioni delle tubazioni in PE saranno eseguite, a seconda del tipo stabilito, con le seguenti modalità.

1.1. Giunzione per saldatura

Essa deve essere sempre eseguita:

- da personale qualificato;
- con apparecchiature tali da garantire che gli errori nelle temperature, nelle pressioni, nei tempi ecc. siano ridotti al minimo;
 - in ambiente atmosferico tranquillo (assenza di precipitazioni, di vento, di eccessiva polverosità).

1.2. Saldatura per polifusione nel bicchiere

Questo tipo di saldatura si effettua generalmente per la giunzione di pezzi speciali già predisposti per tale sistema (norme UNI EN 12201-1 e UNI EN 12201-3).

In tale tipo di giunzioni la superficie interna del bicchiere (estremità femmina) e la superficie esterna della estremità maschio, dopo accurata pulizia con apposito attrezzo, vengono portate contemporaneamente alla temperatura di saldatura mediante elemento riscaldante che dovrà essere rivestito sulle superfici interessate con PTFE (politetrafluoroetilene) o similari.

Le due estremità vengono quindi inserite l'una nell'altra mediante pressione, evitando ogni spostamento assiale e rotazione.

La pressione deve essere mantenuta fino al consolidamento del materiale. La temperatura dell'attrezzo riscaldante sarà compresa nell'intervallo di 250 \pm 10 °C.

1.3. Saldatura testa a testa

E' usata nelle giunzioni fra tubo e tubo e fra tubo e raccordo quando quest'ultimo è predisposto in tal senso. Questo tipo di saldatura viene realizzata con termoelementi costituiti in genere da piastre di acciaio inossidabile o di lega di alluminio, rivestite con tessuto di PTFE (politetrafluoroetilene) e fibra di vetro, o con uno strato di vernice antiaderente. Tali elementi saranno riscaldati con resistenze elettriche o con gas con regolazione automatica della temperatura.

Prima di effettuare le operazioni inerenti alla saldatura, occorrerà fare in modo che tutte le generatrici del tubo siano alla medesima temperatura.

1.3.1. Preparazione delle testate da saldare

Le testate dei manufatti devono essere preparate per la saldatura testa a testa creando la complanarietà delle sezioni di taglio per mezzo di frese che possono essere manuali per i piccoli diametri ed elettriche per i diametri e gli spessori più alti; queste ultime devono avere velocità moderata per evitare il riscaldamento del materiale.

Le testate così predisposte non devono essere toccate da mani o da altri corpi untuosi; nel caso ciò avvenisse dovranno essere accuratamente sgrassate con trielina od altri solventi idonei.

1.3.2. Esecuzione della saldatura

I due pezzi da saldare vengono quindi messi in posizione e bloccati con due ganasce collegate con un sistema che ne permetta l'avvicinamento e che dia una pressione controllata sulla superficie di contatto.

Il termoelemento viene inserito fra le testate che verranno spinte contro la sua superficie.

Il materiale passerà quindi allo stato plastico formando un leggero rigonfiamento.

Al tempo previsto il termoelemento viene estratto e le due testate vengono spinte l'una contro l'altra alla pressione sotto indicata fino a che il materiale non ritorna allo stato solido.

La saldatura non deve essere rimossa se non quando la zona saldata si sia raffreddata spontaneamente alla temperatura di circa 60 °C.

Per una perfetta saldatura il PE richiede:

- temperatura superficiale del termoelemento 200 ± 10 °C;
- tempo di riscaldamento variabile in relazione allo spessore;
- pressione in fase di riscaldamento, riferita alla superficie da saldare, tale da assicurare il continuo contatto delle testate sulla piastra (valore iniziale 0,5 kgf/cmq).

1.4 Giunzioni elettrosaldabili

Tali giunzioni si eseguono riscaldando elettricamente il bicchiere in PE nel quale è incorporata una resistenza elettrica che produce il calore necessario per portare alla fusione il polietilene; sono consigliabili quando si devono assiemare due estremità di tubo che non possono essere rimosse dalla loro posizione (es. riparazioni).

L'attrezzatura consiste principalmente in un trasformatore di corrente che riporta la tensione adatta per ogni diametro di manicotto e ne determina automaticamente i tempi di fusione e sarà impiegata secondo le istruzioni del fornitore.

Per una buona riuscita della saldatura è necessario accertarsi che le superfici interessate alla giunzione (interna del manicotto ed esterna dei tubi) siano assolutamente esenti da impurità di qualsiasi genere ed in particolare modo prive di umidità ed untuosità. Le parti che si innestano nel manicotto devono essere precedentemente raschiate con un coltello affilato onde togliere l'ossidazione superficiale del materiale.

A saldatura ultimata, la stessa non sarà forzata in alcun modo se non fino a quando la temperatura superficiale esterna del manicotto sia spontaneamente scesa sotto i 50 °C.

1.5. Giunzione mediante serraggio meccanico

Può essere realizzata mediante i seguenti sistemi.

- Giunti metallici. Esistono diversi tipi di giunti metallici a compressione i quali non effettuano il graffaggio del tubo sull'esterno (es. giunti Gibault) e quindi necessitano di una boccola interna.

Nel caso che il graffaggio venga effettuato sull'esterno del tubo non è indispensabile tale boccola.

- Raccordi di materia plastica. Sono usati vari tipi di raccordi a compressione di materia plastica, nei quali la giunzione viene effettuata con l'uso di un sistema di graffiaggio sull'esterno del tubo.

1.6. Giunzione per flangiatura

Per la flangiatura di spezzoni di tubazione o di pezzi speciali si usano flange scorrevoli infilate su collari saldabili in PF

I collari, data la resistenza che devono esercitare, saranno prefabbricati dal fornitore dei tubi e saranno applicati (dopo l'infilaggio della flangia) mediante saldatura di testa. Le flange saranno quindi collegate con normali bulloni o tiranti di lunghezza appropriata, con l'inserimento di idonee guarnizioni in tutti i casi. Le flange, a secondo dell'uso della condotta, potranno essere di normale acciaio al carbonio protetto con rivestimento di plastica; a collegamento avvenuto, flange e bulloni verranno convenientemente protetti contro la corrosione.

2) Collegamenti fra tubi in PE e tubazioni di altro materiale

Il collegamento fra tubi in PE in pressione e raccordi, pezzi speciali ed accessori di altro materiale (gres, ecc.) avviene generalmente o con una giunzione mediante serraggio meccanico (punto 1.5) o mezzo flange con collari predisposti su tubo (punto 1.6).

In questi casi è preferibile, data la diversità di caratteristiche fra le tubazioni, il collegamento tramite

pozzetto di ispezione.

4.5 Ancoraggi e prova delle condotte in PE

Eseguiti i necessari ancoraggi secondo le prescrizioni della Direzione dei Lavori, si procederà alla prova idraulica della condotta.

La prova si intende riferita alla condotta con i relativi giunti, curve, T, derivazioni e riduzioni escluso quindi qualsiasi altro accessorio idraulico e cioè: saracinesche, sfiati, scarichi di fondo, idranti, ecc.

La prova idraulica in opera dei tubi in PE sarà effettuata a tratte di lunghezza opportuna.

Come prima operazione si dovrà procedere ad ancorare la condotta nello scavo mediante parziale riempimento con terra vagliata, con l'avvertenza però di lasciare i giunti scoperti ed ispezionabili: ciò per consentire il controllo della loro tenuta idraulica e per evitare comunque il movimento orizzontale e verticale dei tubi sottoposti a pressione.

Si procederà quindi al riempimento con acqua dal punto più depresso della tratta, ove verrà installato pure il manometro.

Si avrà la massima cura nel lasciare aperti rubinetti, sfiati ecc. onde consentire la completa fuoriuscita dell'aria.

Riempita la tratta nel modo sopra descritto la si metterà in pressione a mezzo di una pompa, salendo gradualmente di un kgf/cm² al minuto primo fino a raggiungere la pressione di esercizio.

Questa verrà mantenuta per il tempo necessario per consentire l'assestamento dei giunti e l'eliminazione di eventuali perdite che non richiedono lo svuotamento della condotta.

Prova a 1 ora (preliminare-indicativa)

Si porterà la tratta interessata alla pressione di prova idraulica (1,5 volte la pressione nominale a 20 °C) e si isolerà il sistema dalla pompa di prova per un periodo di 1 ora; nel caso di calo di pressione si misurerà il quantitativo di acqua occorrente per ripristinare la pressione di prova.

Tale quantitativo non dovrà superare il quantitativo d'acqua ricavato con la seguente formula: 0,125 1 per ogni km di condotta, per ogni 3 bar, per ogni 25 mm di diametro interno.

Prova a 12 ore

Effettuata la prova a 1 ora ed avendo ottenuto risultato positivo, si procederà al collaudo a 12 ore lasciando la tratta interessata alla pressione di prova (1,5 volte la pressione nominale) per tale periodo.

Trascorso tale termine, nel caso di calo di pressione, il quantitativo di acqua necessaria per ristabilire la pressione di prova non dovrà superare il quantitativo di acqua ottenuto con la precedente formula riferita a 12 ore. Solo in quest'ultimo caso, il collaudo sarà da ritenersi positivo.

4.6 Pozzetti e prova idraulica delle condotte in PE per fognatura

I pozzetti di ispezione possono essere prefabbricati o realizzati in cantiere. In ogni caso si otterranno tagliando a misura un tubo di diametro opportuno e saldandolo su una piastra di PE. Le tubazioni (tronchetti) di adduzione verranno saldate al pozzetto.

Infine l'unione delle tubazioni ai vari tronchetti si otterrà mediante saldatura di testa o, se predisposta, mediante flangiatura. Ultimato il collegamento delle tubazioni al pozzetto, lo stesso sarà rivestito da una struttura cementizia. La base d'appoggio in calcestruzzo sarà calcolata opportunamente in funzione della natura del terreno.

Si otterrà così il pozzetto finito in cui il cemento rappresenterà la struttura portante, mentre il tubo di PE rappresenterà il rivestimento interno. I tubi della condotta (tronchetti di adduzione) verranno bloccati nel cemento con anelli o collari di ancoraggio opportunamente predisposti. Tali anelli saranno ricavati da piastre di spessore $s=20\,$ mm e saranno saldati d'angolo a gas caldo con sostegni di rinforzo a sezione triangolare, posti alternativamente d'ambo i lati del collare.

La prova della condotta dovrà accertare la perfetta tenuta della canalizzazione; sarà effettuata sottoponendo a pressione idraulica la condotta stessa mediante riempimento con acqua del tronco da collaudare - di lunghezza opportuna, in relazione alla pendenza - attraverso il pozzetto di monte, fino al livello stradale del pozzetto a valle.

TUBAZIONI IN GENERE

Generalità

Per le tubazioni e le apparecchiature idrauliche valgono le disposizioni dell'articolo "Norme Generali - Accettazione Qualità ed Impiego dei Materiali" del capitolo "Qualità dei Materiali e dei Componenti" esse devono corrispondere alle vigenti Norme tecniche.

Le prescrizioni di tutto questo articolo si applicano a tutte le tubazioni in generale; si applicano anche ad ogni tipo delle tubazioni di cui agli articoli (tubazioni di acciaio, di ghisa, ecc.) del capitolo "Tubazioni" tranne per quanto sia incompatibile con le specifiche norme per esse indicate.

Fornitura diretta delle tubazioni da parte della Stazione Appaltante

In caso di fornitura diretta delle tubazioni, la Stazione Appaltante effettuerà le ordinazioni - tenendo conto del programma di esecuzione dei lavori - in base alle distinte risultanti dai rilievi esecutivi presentati dall'Appaltatore a norma dell'articolo "Oneri e Obblighi diversi a carico dell'Appaltatore - Responsabilità dell'Appaltatore".

La Stazione Appaltante si riserva la facoltà di disporre variazioni nello sviluppo delle opere in dipendenza anche della consegna delle forniture; e comunque non assume nessuna responsabilità circa eventuali ritardi nella consegna delle forniture, per cause ad essa non imputabili, rispetto alle previsioni.

La consegna delle forniture dirette della Stazione Appaltante avverrà, a criterio insindacabile della Stazione Appaltante stessa, su banchina franco porto oppure su vagone franco stazione ferroviaria oppure franco camion, su strade statali, provinciali o comunali, oppure franco fabbrica. In quest'ultimo caso la consegna sarà effettuata da incaricati della Stazione Appaltante subito dopo il collaudo della fornitura, al quale potranno intervenire incaricati dell'Appaltatore.

A collaudo avvenuto e ad accettazione della fornitura, l'Appaltatore - quando è prevista la consegna franco fabbrica - può disporne alla Ditta fornitrice l'immediata spedizione con l'adozione dei provvedimenti necessari a garantire che i materiali rimangano assolutamente integri durante il trasporto. Diversamente la Stazione Appaltante disporrà la spedizione direttamente nel modo che riterrà più opportuno, a spese dell'Appaltatore, preavvertendolo.

All'atto della consegna, l'Appaltatore deve controllare i materiali ricevuti e nel relativo verbale di consegna che andrà a redigersi deve riportare eventuali contestazioni per materiali danneggiati (anche se solo nel rivestimento) nei riguardi della fabbrica o delle Ferrovie dello Stato o dell'armatore della nave o della ditta di autotrasporti).

L'Appaltatore dovrà provvedere nel più breve tempo possibile allo scarico da nave o da vagone o da camion - anche per evitare spese per soste, che rimarrebbero comunque tutte a suo carico oltre al risarcimento degli eventuali danni che per tale causale subisse la Stazione Appaltante - e poi al trasporto con qualsiasi mezzo sino al luogo d'impiego compresa ogni e qualsiasi operazione di scarico e carico sui mezzi all'uopo usati dall'Appaltatore stesso.

I materiali consegnati che residueranno alla fine dei lavori dovranno essere riconsegnati alla Stazione Appaltante - con relativo verbale in cui sarà precisato lo stato di conservazione di materiali ed al quale sarà allegata una dettagliata distinta degli stessi - con le modalità che saranno da questa, o per essa dalla Direzione dei Lavori, stabilite.

Per i materiali che a lavori ultimati risulteranno non impiegati né riconsegnati alla Stazione Appaltante oppure che saranno riconsegnati ma in condizioni di deterioramento o danneggiamento, sarà effettuata una corrispondente operazione di addebito, al costo, sul conto finale.

Ordinazione

L'Appaltatore effettuerà l'ordinazione delle tubazioni entro il termine che potrà stabilire la Direzione dei Lavori e che sarà comunque tale, tenuto anche conto dei tempi di consegna, da consentire lo svolgimento dei lavori secondo il relativo programma e la loro ultimazione nel tempo utile contrattuale.

L'Appaltatore invierà alla Direzione dei Lavori, che ne darà subito comunicazione alla Stazione Appaltante, copia dell'ordinazione e della relativa conferma da parte della Ditta fornitrice, all'atto rispettivamente della trasmissione e del ricevimento.

L'ordinazione dovrà contenere la clausola seguente o equipollente.

"La Ditta fornitrice si obbliga a consentire, sia durante che al termine della lavorazione, libero accesso nella sua fabbrica alle persone all'uopo delegate dalla Stazione Appaltante appaltatrice dei lavori e ad eseguire i controlli e le verifiche che esse richiedessero, a cura e spese dell'Appaltatore, sulla corrispondenza della fornitura alle prescrizioni del contratto di appalto relativo ai lavori sopra indicati.

Si obbliga inoltre ad assistere, a richiesta ed a spese dell'Appaltatore, alle prove idrauliche interne delle tubazioni poste in opera".

L'unica fornitura o ciascuna delle singole parti in cui l'intera fornitura viene eseguita, sarà in ogni caso

accompagnata dal relativo certificato di collaudo compilato dalla Ditta fornitrice, attestante la conformità della fornitura alle Norme vigenti e contenente la certificazione dell'avvenuto collaudo e l'indicazione dei valori ottenuti nelle singole prove.

I risultati delle prove di riferimento e di collaudo dei tubi, dei giunti e dei pezzi speciali effettuate in stabilimento a controllo della produzione, alle quali potranno presenziare sia l'Appaltatore e sia la Direzione dei Lavori od altro rappresentante della Stazione Appaltante e le quali comunque si svolgeranno sotto la piena ed esclusiva responsabilità della Ditta fornitrice, saranno valutati con riferimento al valore della pressione nominale di fornitura PN.

L'Appaltatore richiederà alla ditta fornitrice la pubblicazione di questa, di cui un esemplare verrà consegnato alla Direzione dei Lavori, contenente le istruzioni sulle modalità di posa in opera della tubazione.

Accettazione delle tubazioni - Marcatura

L'accettazione delle tubazioni è regolata dalle prescrizioni di questo capitolato nel rispetto di quanto indicato al punto 2.1.4. del D.M. 12 dicembre 1985, del D.M. 6 aprile 2004, n. 174 "Regolamento concernente i materiali e gli oggetti che possono essere utilizzati negli impianti fissi di captazione, trattamento, adduzione e distribuzione delle acque destinate al consumo umano" nonché delle istruzioni emanate con la Circolare Ministero Lavori Pubblici del 20 marzo 1986 n.27291 e, per i tubi in cemento armato ordinario e in cemento armato precompresso, delle Norme vigenti per le strutture in cemento armato, in quanto applicabili.

Nei riguardi delle pressioni e dei carichi applicati staticamente devono essere garantiti i requisiti limiti indicati nelle due tabelle allegate al D.M. 12 dicembre 1985: tabella I, per tubi di adduzione in pressione (acquedotti) e II, per le fognature.

Tutti i tubi, i giunti ed i pezzi speciali dovranno giungere in cantiere dotati di marcature indicanti la ditta costruttrice, il diametro nominale, la pressione nominale (o la classe d'impiego) e possibilmente l'anno di fabbricazione; le singole paratie della fornitura dovranno avere una documentazione dei risultati delle prove eseguite in stabilimento caratterizzanti i materiali ed i tubi forniti.

La Stazione Appaltante ha la facoltà di effettuare sulle tubazioni fornite in cantiere - oltre che presso la fabbrica - controlli e verifiche ogni qualvolta lo riterrà necessario, secondo le prescrizioni di questo capitolato e le disposizioni della Direzione dei Lavori.

Tutti i tubi, i giunti ed i pezzi speciali dovranno essere conformi, ove applicabili, alle norme UNI EN 10311, UNI EN 10312, UNI EN 1123-1-2, UNI EN 1124-1-2-3, UNI EN 10224, UNI EN 13160-1.

Tutti i prodotti e/o materiali impiegati, comunque, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Rivestimento interno

Il rivestimento interno delle tubazioni non deve contenere alcun elemento solubile in acqua né alcun prodotto che possa dare sapore od odore all'acqua dopo un opportuno lavaggio della condotta.

Per le condotte di acqua potabile il rivestimento interno non deve contenere elementi tossici.

Tipi di giunti

Oltre ai giunti specificati per i vari tipi di tubazioni (acciaio, ghisa, ecc.), potranno adottarsi, in casi particolari (come l'allestimento di condotte esterne provvisorie), i seguenti altri tipi di giunti:

- Giunto a flange libere con anello di appoggio saldato a sovrapposizione, secondo la norma UNI EN 1092-1.
 - Giunto a flange saldate a sovrapposizione, secondo le norme UNI EN 1092-1.
 - Giunto a flange saldate di testa, secondo le norme UNI EN 1092-1.
- Giunto Victaulic, automatico (che è di rapido montaggio e smontaggio, particolarmente indicato per condotte provvisorie e per tracciati accidentali).
- Giunto Gibault (o simili, come Dresser, Viking-Johnson), costituito da un manicotto (botticella) e da due flange in ghisa, da bulloni di collegamento in ferro e da due anelli di gomma a sezione circolare, da impiegare per la giunzione di tubi con estremità lisce.

Apparecchiature idrauliche

Le apparecchiature idrauliche dovranno corrispondere alle caratteristiche e requisiti di accettazione delle vigenti norme UNI.

Su richiesta della Direzione dei Lavori, l'Appaltatore dovrà esibire, entro 3 mesi dalla data della consegna (o della prima consegna parziale) dei lavori e comunicando il nominativo della ditta costruttrice, i loro prototipi che la Direzione dei Lavori, se li ritenga idonei, potrà fare sottoporre a prove di fatica nello stabilimento di produzione od in un laboratorio di sua scelta; ogni onere e spesa per quanto sopra resta a carico

dell'Appaltatore.

L'accettazione delle apparecchiature da parte della Direzione dei Lavori non esonera l'Appaltatore dall'obbligo di consegnare le apparecchiature stesse in opera perfettamente funzionanti.

Art. 6 TUBAZIONI IN PE (FOGNATURE)

Le tubazioni in Polietilene strutturato ad alta densità dovranno essere in PE corrugato, corrugato esternamente e con parete interna liscia "tipo B", prodotti in conformità alla UNI EN 12201, e a quanto previsto dal D.M. n.174 del 06/04/2004 (sostituisce Circ. Min. Sanità n. 102 del 02/12/1978); dovranno essere contrassegnati dal marchio IIP dell'Istituto Italiano dei Plastici e/o equivalente marchio europeo e conformi, inoltre, al D.M. 6 aprile 2004, n.174 "Regolamento concernente i materiali e gli oggetti che possono essere utilizzati negli impianti fissi di captazione, trattamento, adduzione e distribuzione delle acque destinate al consumo umano".

I tubi in PE ed i relativi raccordi in materiali termoplastici devono essere contrassegnati con il marchio di conformità I.I.P. che ne assicura la rispondenza alle Norme UNI, limitatamente alle dimensioni previste dalle norme stesse.

I raccordi ed i pezzi speciali devono rispondere alle stesse caratteristiche chimico-fisiche dei tubi; possono essere prodotti per stampaggio o ricavati direttamente da tubo diritto mediante opportuni tagli, sagomature ed operazioni a caldo (piegatura, saldature di testa o con apporto di materiale, ecc.). In ogni caso tali operazioni devono essere sempre eseguite da personale specializzato e con idonea attrezzatura presso l'officina del fornitore. Per le figure e le dimensioni non previste dalle norme UNI o UNIPLAST si possono usare raccordi e pezzi speciali di altri materiali purché siano idonei allo scopo.

Per la fognatura saranno impiegati tubi previsti dalle norme UNI con rigidità anulare SN8.

Art. 7 OPERE E STRUTTURE DI CALCESTRUZZO

7.1) Generalità

Impasti di Calcestruzzo

Gli impasti di calcestruzzo dovranno essere eseguiti in conformità di quanto previsto dal D.M. 14 gennaio 2008 e dalle relative norme vigenti.

La distribuzione granulometrica degli inerti, il tipo di cemento e la consistenza dell'impasto, devono essere adeguati alla particolare destinazione del getto ed al procedimento di posa in opera del conglomerato.

Il quantitativo d'acqua deve essere il minimo necessario a consentire una buona lavorabilità del conglomerato tenendo conto anche dell'acqua contenuta negli inerti.

Partendo dagli elementi già fissati il rapporto acqua-cemento, e quindi il dosaggio del cemento, dovrà essere scelto in relazione alla resistenza richiesta per il conglomerato.

L'impiego degli additivi dovrà essere subordinato all'accertamento della assenza di ogni pericolo di aggressività e devono essere conformi alla norma europea armonizzata UNI EN 934-2.

L'acqua di impasto, ivi compresa l'acqua di riciclo, dovrà essere conforme alla norma UNI EN 1008.

L'impasto deve essere fatto con mezzi idonei ed il dosaggio dei componenti eseguito con modalità atte a garantire la costanza del proporzionamento previsto in sede di progetto.

Nei calcestruzzi è ammesso l'impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d'altoforno e fumi di silice, purché non ne vengano modificate negativamente le caratteristiche prestazionali.

Le ceneri volanti devono soddisfare i requisiti della norma europea armonizzata UNI EN 450-1. Per quanto riguarda l'impiego si potrà fare utile riferimento ai criteri stabiliti dalle norme UNI EN 206 ed UNI 11104.

I fumi di silice devono soddisfare i requisiti della norma europea armonizzata UNI EN 13263-1. Per i calcestruzzi preconfezionati si fa riferimento alla norma UNI EN 206.

Controlli sul Calcestruzzo

Per i controlli sul calcestruzzo ci si atterrà a quanto previsto dal D.M. 14 gennaio 2008.

Il calcestruzzo viene individuato tramite la resistenza caratteristica a compressione secondo quanto specificato nel suddetto D.M.

La resistenza caratteristica del calcestruzzo dovrà essere non inferiore a quella richiesta dal progetto.

Il controllo di qualità del calcestruzzo si articola nelle seguenti fasi:

- Valutazione preliminare della resistenza;
- Controllo di produzione
- Controllo di accettazione
- Prove complementari

Le prove di accettazione e le eventuali prove complementari, sono eseguite e certificate dai laboratori di cui all'art. 59 del D.P.R. n. 380/2001.

La qualità del calcestruzzo, è controllata dalla Direzione dei Lavori, secondo le procedure di cui al punto 11.2.5. del D.M. 14 gennaio 2008.

Resistenza al Fuoco

Le verifiche di resistenza al fuoco potranno esequirsi con riferimento a UNI EN 1992-1-2.

7.2) Norme per il Cemento Armato Normale

Nella esecuzione delle opere di cemento armato normale l'Appaltatore dovrà attenersi a quanto contenuto nel D.P.R. 380/2001 e s.m.i., nelle norme tecniche del D.M. 14 gennaio 2008 e nella relativa normativa vigente.

Armatura delle travi

Negli appoggi di estremità all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio.

Almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Armatura dei pilastri

Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm e non potranno avere interassi maggiori di 300 mm.

Le armature trasversali devono essere poste ad interasse non maggiore di 12 volte il diametro minimo delle barre impiegate per l'armatura longitudinale, con un massimo di 250 mm. Il diametro delle staffe non deve essere minore di 6 mm e di ¼ del diametro massimo delle barre longitudinali.

Copriferro e interferro

L'armatura resistente deve essere protetta da un adeguato ricoprimento di calcestruzzo.

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature.

Per consentire un omogeneo getto del calcestruzzo, il copriferro e l'interferro delle armature devono essere rapportati alla dimensione massima degli inerti impiegati.

Il copriferro e l'interferro delle armature devono essere dimensionati anche con riferimento al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

Ancoraggio delle barre e loro giunzioni

Le armature longitudinali devono essere interrotte ovvero sovrapposte preferibilmente nelle zone compresse o di minore sollecitazione.

La continuità fra le barre può effettuarsi mediante:

- sovrapposizione, calcolata in modo da assicurare l'ancoraggio di ciascuna barra. In ogni caso la lunghezza di sovrapposizione nel tratto rettilineo deve essere non minore di 20 volte il diametro della barra. La distanza mutua (interferro) nella sovrapposizione non deve superare 4 volte il diametro;
- saldature, eseguite in conformità alle norme in vigore sulle saldature. Devono essere accertate la saldabilità degli acciai che vengono impiegati, nonché la compatibilità fra metallo e metallo di apporto nelle posizioni o condizioni operative previste nel progetto esecutivo;
- giunzioni meccaniche per barre di armatura. Tali tipi di giunzioni devono essere preventivamente validati mediante prove sperimentali.

Per barre di diametro Ø >32 mm occorrerà adottare particolari cautele negli ancoraggi e nelle sovrapposizioni.

Tutti i progetti devono contenere la descrizione delle specifiche di esecuzione in funzione della particolarità dell'opera, del clima, della tecnologia costruttiva.

In particolare il documento progettuale deve contenere la descrizione dettagliata delle cautele da adottare per gli impasti, per la maturazione dei getti, per il disarmo e per la messa in opera degli elementi strutturali. Si potrà a tal fine fare utile riferimento alla norma UNI EN 13670 "Esecuzione di strutture di calcestruzzo".

7.3) Norme Ulteriori per il Cemento Armato Precompresso

Nella esecuzione delle opere di cemento armato precompresso l'Appaltatore dovrà attenersi a quanto contenuto nel D.P.R. 380/2001 e s.m.i., nelle norme tecniche del D.M. 14 gennaio 2008 e nella relativa normativa vigente.

I sistemi di precompressione con armature, possono essere a cavi scorrevoli ancorati alle estremità (sistemi post-tesi) o a cavi aderenti (sistemi pre-tesi).

La condizione di carico conseguente alla precompressione si combinerà con le altre (peso proprio, carichi permanenti e variabili) al fine di avere le più sfavorevoli condizioni di sollecitazione.

Nel caso della post-tensione, se le armature di precompressione non sono rese aderenti al conglomerato cementizio dopo la tesatura mediante opportune iniezioni di malta all'interno delle guaine (cavi non aderenti), si deve tenere conto delle consequenze dello scorrimento relativo acciaio-calcestruzzo.

Le presenti norme non danno indicazioni su come trattare i casi di precompressione a cavi non aderenti per i quali si potrà fare riferimento ad UNI EN 1992-1-1.

Nel caso sia prevista la parzializzazione delle sezioni nelle condizioni di esercizio, particolare attenzione deve essere posta alla resistenza a fatica dell'acciaio in presenza di sollecitazioni ripetute.

Esecuzione delle opere in calcestruzzo armato precompresso

L'armatura resistente deve essere protetta da un adeguato ricoprimento di calcestruzzo.

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature.

Per consentire un omogeneo getto del calcestruzzo, il copriferro e l'interferro delle armature devono essere rapportati alla dimensione massima degli inerti impiegati.

Il copriferro e l'interferro delle armature devono essere dimensionati anche con riferimento al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

Nel caso di armature pre-tese, nella testata i trefoli devono essere ricoperti con adeguato materiale protettivo, o con getto in opera.

Nel caso di armature post-tese, gli apparecchi d'ancoraggio della testata devono essere protetti in modo analogo.

All'atto della messa in tiro si debbono misurare contemporaneamente lo sforzo applicato e l'allungamento conseguito.

La distanza minima netta tra le guaine deve essere commisurata sia alla massima dimensione dell'aggregato impiegato sia al diametro delle guaine stesse in relazione rispettivamente ad un omogeneo getto del calcestruzzo fresco ed al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

I risultati conseguiti nelle operazioni di tiro, le letture ai manometri e gli allungamenti misurati, vanno registrati in apposite tabelle e confrontate con le tensioni iniziali delle armature e gli allungamenti teorici previsti in progetto.

La protezione dei cavi scorrevoli va eseguita mediante l'iniezione di adeguati materiali atti a prevenire la corrosione ed a fornire la richiesta aderenza.

Per la buona esecuzione delle iniezioni è necessario che le stesse vengano eseguite secondo apposite procedure di controllo della qualità.

7.4) Responsabilità per le Opere in Calcestruzzo Armato e Calcestruzzo Armato Precompresso

Nell'esecuzione delle opere in cemento armato normale e precompresso l'Appaltatore dovrà attenersi strettamente a tutte le disposizioni contenute nel D.P.R. 380/2001 e s.m.i., e nelle norme tecniche vigenti (UNI EN 1991-1-6).

Nelle zone sismiche valgono le norme tecniche emanate in forza del D.P.R. 380/2001 e s.m.i., e del D.M. 14 gennaio 2008.

Tutti i lavori di cemento armato facenti parte dell'opera appaltata, saranno eseguiti in base ai calcoli di stabilità accompagnati da disegni esecutivi e da una relazione, che dovranno essere redatti e firmati da un tecnico abilitato iscritto all'Albo, e che l'Appaltatore dovrà presentare alla Direzione dei Lavori entro il termine che gli verrà prescritto, attenendosi agli schemi e disegni facenti parte del progetto ed allegati al contratto o alle norme che gli verranno impartite, a sua richiesta, all'atto della consegna dei lavori.

L'esame e verifica da parte della Direzione dei Lavori dei progetti delle varie strutture in cemento armato non esonera in alcun modo l'Appaltatore e il progettista delle strutture dalle responsabilità loro derivanti per legge e per le precise pattuizioni del contratto.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

7.5) Calcestruzzo di Aggregati Leggeri

Nella esecuzione delle opere in cui sono utilizzati calcestruzzi di aggregati leggeri minerali, artificiali o naturali, con esclusione dei calcestruzzi aerati, l'Appaltatore dovrà attenersi a quanto contenuto nel D.P.R. 380/2001 e s.m.i., nelle norme tecniche del D.M. 14 gennaio 2008 e nella relativa normativa vigente.

Per le classi di densità e di resistenza normalizzate può farsi utile riferimento a quanto riportato nella norma UNI EN 206.

Valgono le specifiche prescrizioni sul controllo della qualità date nei punti 4.1 e 11.1. del D.M. 14 gennaio 2008.

Art. 8 OPERE STRADALI

8.1 Formazione del Corpo Stradale

Tracciamenti

Prima di porre mano ai lavori di sterro o riporto, l'Appaltatore è obbligato ad eseguire la picchettazione completa del lavoro, in modo che risultino indicati i limiti degli scavi e dei riporti come indicato negli elaborati grafici. A suo tempo dovrà pure posizionare, nei tratti indicati dalla Direzione dei Lavori, le modine o garbe necessarie a determinare con precisione l'andamento delle scarpate, tanto degli sterri che dei rilevati, curandone poi la conservazione e rimettendo quelli manomessi durante l'esecuzione dei lavori.

Quantunque i tracciamenti siano fatti e verificati dalla Direzione dei Lavori, l'impresa resterà responsabile dell'esattezza dei medesimi, e quindi sarà obbligata a demolire e rifare a sue spese quelle opere che non risultassero eseguite conformemente ai disegni di progetto ed alle prescrizioni inerenti. Saranno a carico dell'impresa le spese per rilievi, tracciamenti, verifiche e misurazioni, per i cippi di cemento ed in pietra, per materiali e mezzi d'opera, ed inoltre per il personale ed i mezzi di trasporto occorrenti, dall'inizio delle consegne fino al collaudo compiuto.

Qualora ai lavori in terra siano connesse opere murarie o in calcestruzzo armato, l'Appaltatore dovrà procedere al tracciamento di esse, pure con l'obbligo della conservazione dei picchetti, ed, eventualmente, delle modine, come per i lavori in terra.

Scavi in genere

Gli scavi, i disgaggi ed i movimenti di materie in genere occorrenti per la sagomatura delle aree, dei versanti e delle sponde, per la creazione delle piste di transito dei mezzi e per ricavare fossi, cunette, accessi, passaggi, rampe e simili, saranno eseguiti conformemente alle previsioni di progetto, salvo le eventuali varianti che fossero disposte dalla Direzione dei Lavori. Dovrà essere usata ogni esattezza nello scavare i fossi, nello spianare e sistemare i versanti, nel configurare e nel profilare le scarpate.

L'Appaltatore dovrà consegnare scavi o riempimenti in genere, al giusto piano prescritto, con scarpate regolari e spianate, con i cigli bene tracciati e profilati, compiendo a sue spese, durante l'esecuzione dei lavori, fino al collaudo, gli occorrenti ricarichi o tagli, la ripresa e sistemazione delle scarpate e banchine e l'espurgo dei fossi.

In particolare si prescrive:

a) Scavi - Nella esecuzione degli scavi l'Appaltatore dovrà procedere in modo che i cigli siano diligentemente profilati, le scarpate raggiungano la inclinazione prevista nel progetto o che sarà ritenuta necessaria allo scopo di impedire scoscendimenti, restando egli, oltreché totalmente responsabile di eventuali danni alle persone ed alle opere altresì obbligato a provvedere, a suo carico e spese, alla rimozione delle materie franate.

L'Appaltatore dovrà sviluppare i movimenti di materie con adeguati mezzi e con sufficiente mano d'opera in modo da dare gli scavi, possibilmente, completi in ciascun tratto iniziato. Inoltre, dovrà aprire senza indugio i fossi e le cunette occorrenti e, comunque, mantenere efficiente, a sua cura e spese, il deflusso delle acque di versante, se occorra, con canali fugatori, tubazioni provvisionali od ogni altro mezzo ritenuto idoneo

e necessario dalla Direzione dei Lavori.

Le materie provenienti dagli scavi, non utilizzabili e non ritenute idonee, a giudizio della Direzione dei Lavori, per la formazione dei rilevati o per altro impiego nei lavori, dovranno rispettare le norme vigenti, il D.M. 161/2012 "Regolamento recante la disciplina dell'utilizzazione delle terre e rocce da scavo", la Legge 24 marzo 2012, n. 28 recante misure straordinarie e urgenti in materia ambientale e, se del caso, i limiti previsti dalla Tabella 1 - Valori di concentrazione limite accettabili nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare, colonna A (Siti ad uso Verde pubblico, privato e residenziale) e colonna B (Siti ad uso Commerciale ed Industriale) dell'Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e s.m.i.; esse dovranno essere portate a discarica o messe a disposizione su aree, site a qualunque distanza dal cantiere, messe a disposizione dall'Amministrazione Appaltante a seconda delle indicazioni della Direzione dei Lavori. Tale indicazione vale per ogni bene demaniale rimosso dall'area di cantiere.

Le località per tali depositi a rifiuto dovranno essere scelte in modo che le materie depositate non arrechino danni ai lavori, od alle proprietà pubbliche o private, nonché al libero transito dei veicoli e dei pedoni né al deflusso delle acque pubbliche o private.

La Direzione lavori potrà fare asportare, a spese dell'Appaltatore, le materie depositate in contravvenzione alle precedenti disposizioni.

b) Rinterri. - Per la formazione dei rinterri si impiegheranno materie di fornitura, scavate da cave di prestito che forniscano materiali riconosciuti idonei dalla Direzione dei Lavori; tali cave potranno essere aperte dovunque l'Impresa riterrà di sua convenienza, subordinatamente soltanto alla cennata idoneità delle materie da portare in rilevato ed al rispetto delle vigenti disposizioni di legge in materia di polizia mineraria e forestale. Le dette cave di prestito, da aprire a totale cura e spese dell'Impresa alla quale sarà corrisposto soltanto il prezzo unitario di elenco per le materie scavate di tale provenienza, debbono essere coltivate in modo che, tanto durante l'esecuzione degli scavi quanto a scavo ultimato, sia provveduto al loro regolare e completo scolo e restino impediti ristagni di acqua ed impaludamenti. A tale scopo l'Impresa, quando occorra, dovrà aprire, sempre a sua cura e spese, opportuni fossi di scolo con sufficiente pendenza.

Il suolo costituente la base sulla quale si dovrà realizzare la sottostruttura stradale dovrà essere accuratamente preparato, espurgandolo da piante, cespugli, erbe, radici, speroni rocciosi e da qualsiasi altra materia eterogenea, e trasportando fuori della sede del lavoro le materie di rifiuto.

Sarà obbligo dell'Appaltatore, escluso qualsiasi compenso, di dare ai rinterri, durante la loro costruzione, quelle maggiori dimensioni richieste dell'assestamento delle terre, affinché, all'epoca del collaudo o delle lavorazioni successive, i rinterri eseguiti abbiano dimensioni non inferiori a quelle prescritte.

Strato di rinforzo - anticapillare

Lo strato di rinforzo-anticapillare del rilevato sarà realizzato mediante le seguenti lavorazioni:

- scavo di sbancamento;
- posizionamento sul fondo dello scavo di un geotessile tessuto in polipropilene nero (trama-ordito);
- riempimento del volume scavato con materiale proveniente da riciclaggio degli scarti delle attività di costruzione e demolizione;

Lo strato di rinforzo-anticapillare dovrà avere uno spessore compreso tra 30 e 50 cm; sarà composto di aggregato da costruzione e demolizione da utilizzare conforme ai seguenti requisiti:

Materiali per corpo dello strato di rinforzo-anticapillare

Parametro	Modalità di prova	Limiti
Cls, mattoni e laterizi, intonaci, materiali litici, malte, ceramica	Separazione visiva su trattenuto setaccio 4 mm	> 70 % in massa
Vetro e scorie vetrose	Separazione visiva su trattenuto setaccio 4 mm	< 25% in massa
Conglomerati bituminosi	Separazione visiva su trattenuto setaccio 4 mm	< 15% in totale < 5% per ciascuna tipologia
Altri rifiuti minerali dei quali sia ammesso il recupero nel corpo stradale ai sensi della legislazione vigente	Separazione visiva su trattenuto setaccio 4 mm	< 0,3% in massa
Materiali deperibili o cavi (carta, legno, fibre tessili, cellulosa, residui alimentari)		< 0,6% in massa
Altri materiali (gesso metalli, guaine, gomme, lana di roccia o vetro etc.)		2 mm < d < 50 mm
Granulometria		
Passante setaccio 2 mm	UNI EN 933-1 CNR BU n° 23:1971	< 15%

Passante setaccio 0,075	UNI EN 933-1 CNR BU n° 23:1971	< 3%
Indice di plasticità	UNI CEN ISO/TS 17892-12	N.P.

I costituenti della frazione trattenuta allo staccio da 63 mm devono essere compatti e privi di vuoti interni (blocchi di roccia, mattoni pieni, calcestruzzo senza armatura sporgente): non possono essere accettati mattoni forati, blocchi forati e simili, se non frantumati fino a risultare passanti anche nel seguito allo staccio da 63 mm.

Il materiale dovrà risultare del tutto esente da componenti instabili (gelivi, solubili, etc.) e da resti vegetali; è ammesso l'impiego di materiali frantumati.

Il geotessile sarà costituito da tessuto in bandelle di larghezza costante intrecciate regolarmente tra loro, ottenuto da fibre 100% polipropilene di prima qualità (con esclusione di fibre riciclate), in rotoli di larghezza minima 5.0 m.

Il geotessile dovrà presentare superficie scabra, essere imputrescibile ed atossico, essere resistente ai raggi ultravioletti, ai solventi, alle reazioni chimiche che si producono nel terreno, alle cementazioni naturali, all'azione di microrganismi, nonché essere antinquinante ed isotropo.

Il geotessile dovrà essere approvato dalla Direzione dei Lavori e la posa dovrà essere realizzata seguendo le indicazioni degli elaborati grafici su tutta la superficie di fondo dello scavo, con risvolti in verticale per tutto lo spessore di esso (cm 30 su entrambi i lati) e chiusure orizzontali per un minimo di:

- cm 150 su entrambi i lati dello strato di rinforzo per i tratti di variante principale;
- cm 150 su entrambi i lati dello strato di rinforzo per i tratti di collegamento alla viabilità esistente;
- cm 100 su entrambi i lati dello scavo di sbancamento per i tratti della strada di servizio;

Il produttore dovrà rilasciare una dichiarazione di conformità sul materiale fornito attestante le caratteristiche tecniche richieste.

Il materiale, del peso previsto in progetto per l'impiego specifico, deve rispondere ai requisiti minimi riportati nella successiva Tabella:

Geotessile per strato di rinforzo-anticapillare

Parametro	Normativa	Unità di misura	Valore
Peso	UNI 5114	g/m²	330
Resistenza a trazione su striscia di cm 5, in N - Ordito	UNI EN ISO 13934-1 - UNI EN 29073-3		75
Resistenza a trazione su striscia di cm 5, in N - Trama	UNI EN ISO 13934-1 - UNI EN 29073-3		70
Allungamento, in % - Ordito	UNI EN ISO 13934-1 - UNI EN 29073-3		12
Allungamento, in % - Trama	UNI EN ISO 13934-1 - UNI EN 29073-3		14
Lacerazione, in N	UNI EN ISO 9073-4		0,5
Punzonamento, in N	UNI 8279-14		8
Permeabilità radiale all'acqua, in cm/s	UNI 8279-13		0,8
Dimensione della granulometria passante per filtrazione idrodinamica, corrispondente a quella del 95 % in peso degli elementi di terreno che attraversano il geotessile.			< 100

La campionatura deve essere eseguita, per ciascuna fornitura omogenea, secondo la Norma UNI 8279-1. I prelievi dei campioni sono eseguiti a cura dell'Impresa sotto il controllo della Direzione dei Lavori. Le prove

devono essere effettuate presso Laboratori riconosciuti dal Ministero delle Infrastrutture e dei Trasporti preliminarmente su materiali approvvigionati in cantiere prima del loro impiego, successivamente su materiali prelevati durante il corso dei lavori. Il piano di stesa del geotessile deve essere perfettamente regolare, la giunzione dei teli deve essere realizzata mediante sovrapposizione per almeno 30 cm, sia in senso longitudinale, sia in senso trasversale.

I teli non debbono essere in alcun modo esposti al diretto passaggio dei mezzi di cantiere prima della loro totale copertura con materiale riciclato per uno spessore di almeno 30 cm.

Rilevati

Si definiscono con il termine "rilevati" tutte quelle opere in terra destinate a formare il corpo stradale, le opere di presidio, i piazzali, il piano d'imposta delle pavimentazioni nonché tutte le sistemazioni esterne fino al piano delle quote finite. Le caratteristiche geometriche di tali opere saranno quelle del progetto.

L'uso di materiali diversi da quelli indicati sarà consentito soltanto sa espressamente previsti in progetto.

La classificazione delle terre e la determinazione del loro gruppo di appartenenza sarà conforme alle norme UNI EN 13285 e UNI EN ISO 14688-1 e il loro utilizzo andrà fatto nel rispetto delle norme vigenti, del D.Lgs. n. 152/2006 e s.m.i. e della Legge 24 marzo 2012, n. 28 recante misure straordinarie e urgenti in materia ambientale.

Prima di impiegare i materiali provenienti dagli scavi o dalle cave di prestito, l'Impresa, per ogni zona di provenienza, deve procedere a qualificare le terre da impiegare attraverso una campagna di indagine corredata dei risultati di prove di laboratorio.

Preparazione del Piano di posa del Rilevato

Il suolo costituente la base sulla quale si dovranno impiantare i rilevati dovrà essere accuratamente preparato, espurgandolo da piante, cespugli, erbe, canne, radici e da qualsiasi altra materia eterogenea, e trasportando fuori della sede del lavoro le materie di rifiuto.

La base dei suddetti rilevati, se ricadente su terreno pianeggiante, dovrà essere inoltre arata, e se cadente sulla scarpata di altro rilevato esistente o su terreno a declivio trasversale superiore al quindici per cento, dovrà essere preparata a gradini alti circa 30 cm, con inclinazione inversa a quella del rilevato esistente o del terreno.

La terra da trasportare nei rilevati dovrà essere anch'essa previamente espurgata da erbe, canne, radici e da qualsiasi altra materia eterogenea e dovrà essere disposta in rilevato a cordoli alti da 0,30 m a 0,50 m, bene pigiata ed assodata con particolare diligenza specialmente nelle parti addossate alle murature.

Sarà obbligo dell'Appaltatore, escluso qualsiasi compenso, di dare ai rilevati, durante la loro costruzione, quelle maggiori dimensioni richieste dall'assestamento delle terre, affinché, all'epoca del collaudo, i rilevati eseguiti abbiano dimensioni non inferiori a quelle prescritte.

Non si potrà sospendere la costruzione di un rilevato, qualunque sia la causa, senza che ad esso sia stata data una configurazione tale da assicurare lo scolo delle acque piovane. Nella ripresa del lavoro, il rilevato già eseguito dovrà essere espurgato dalle erbe e cespugli che vi fossero nati, nonché configurato a gradoni, praticandovi inoltre dei solchi per il collegamento delle nuove materie con quelle prima impiegate.

Qualora gli scavi ed il trasporto avvengano meccanicamente, si avrà cura che il costipamento sia realizzato costruendo il rilevato in strati di modesta altezza non eccedenti i 30 o i 50 centimetri. Comunque, dovrà farsi in modo che durante la costruzione si conservi un tenore di acqua conveniente, evitando di formare rilevati con terreni la cui densità ottima sia troppo rapidamente variabile col tenore in acqua, e si eseguiranno i lavori, per quanto possibile, in stagione non piovosa, avendo cura, comunque, di assicurare lo scolo delle acque superficiali e profonde durante la costruzione.

Per il rivestimento delle scarpate si dovranno impiegare terre vegetali per gli spessori previsti in progetto od ordinati dalla Direzione dei Lavori.

Posa in opera

La stesa del materiale deve essere eseguita con regolarità per strati di spessore costante, con modalità e attrezzature atte ad evitare segregazione, brusche variazioni granulometriche e del contenuto d'acqua.

Per evitare disomogeneità dovute alla segregazione che si verifica durante lo scarico dai mezzi di trasporto, il materiale deve essere depositato subito a monte del posto d'impiego, per esservi successivamente riportato dai mezzi di stesa.

La granulometria dei materiali costituenti i differenti strati del rilevato deve essere la più omogenea possibile.

In particolare, deve evitarsi di porre in contatto strati di materiale roccioso, a granulometria poco assortita o uniforme (tale, cioè, da produrre nello strato compattato elevata percentuale dei vuoti), con strati di terre a grana più fine che, durante l'esercizio, per effetto delle vibrazioni prodotte dal traffico, possano penetrare nei vuoti degli strati sottostanti, provocando cedimenti per assestamento del corpo del rilevato.

Durante le fasi di lavoro si deve garantire il rapido deflusso delle portate meteoriche conferendo agli strati pendenza trasversale non inferiore al 3 %.

In presenza di paramenti di massicci in terra rinforzata o di muri di sostegno, in genere, la pendenza deve assicurare l'allontanamento delle acque dai manufatti.

Ciascuno strato può essere messo in opera, pena la rimozione, soltanto dopo avere accertato, mediante prove di controllo, l'idoneità dello strato precedente.

Lo spessore sciolto di ogni singolo strato è stabilito in ragione delle caratteristiche dei materiali, delle macchine e delle modalità di compattazione del rilevato.

In ogni caso, la terra non deve presentare elementi di dimensioni maggiori di 300 mm (100 mm

nell'ultimo metro); questi debbono essere, pertanto, scartati nel sito di prelievo o frantumati, prima del carico sui mezzi di trasporto.

Per i rilevati eseguiti con la tecnica della terra rinforzata e in genere per quelli delimitati da opere di sostegno rigide o flessibili (quali gabbioni) sarà tassativo che la stesa avvenga sempre parallelamente al paramento esterno.

La compattazione potrà aver luogo soltanto dopo aver accertato che il contenuto d'acqua delle terre sia prossimo (±15/20%) a quello ottimo determinato mediante la prova AASHO Modificata (CNR 69 - 1978).

Se tale contenuto dovesse risultare superiore, il materiale dovrà essere essiccato per aerazione; se inferiore, l'aumento sarà conseguito per umidificazione e con modalità tali da garantire una distribuzione uniforme entro l'intero spessore dello strato.

Le attrezzature di costipamento saranno lasciate alla libera scelta dell'Impresa ma dovranno comunque essere atte ad esercitare sul materiale, a seconda del tipo di esso, una energia costipante tale da assicurare il raggiungimento del grado di costipamento prescritto e previsto per ogni singola categoria di lavoro.

Il tipo, le caratteristiche e il numero dei mezzi di compattazione nonché le modalità esecutive di dettaglio (numero di passate, velocità operativa, frequenza) dovranno essere sottoposte alla preventiva approvazione della Direzione Lavori.

La compattazione dovrà essere condotta con metodologia atta ad ottenere un addensamento uniforme:

a tale scopo i rulli dovranno operare con sistematicità lungo direzioni parallele garantendo una sovrapposizione fra ciascuna passata e quella adiacente pari almeno al 10% della larghezza del rullo.

Per garantire una compattazione uniforme lungo i bordi del rilevato, le scarpate dovranno essere riprofilate, una volta realizzata l'opera, rimuovendo i materiali eccedenti la sagoma di progetto.

In presenza di paramenti flessibili e murature laterali, la compattazione a tergo delle opere dovrà essere tale da escludere una riduzione nell'addensamento e nel contempo il danneggiamento delle opere stesse.

Le terre trasportate mediante autocarri o mezzi simili non dovranno essere scaricate direttamente a ridosso delle murature, ma dovranno essere depositate in loro vicinanza e successivamente predisposte in opera con mezzi adatti, per la formazione degli strati da compattare.

Si dovrà inoltre evitare di realizzare rilevati e/o rinterri in corrispondenza di realizzazioni in muratura che non abbiano raggiunto le sufficienti caratteristiche di resistenza.

Nel caso di inadempienza delle prescrizioni precedenti sarà fatto obbligo all'Appaltatore, ed a suo carico, di effettuare tutte le riparazioni e ricostruzioni necessarie per garantire la sicurezza e la funzionalità dell'opera.

Inoltre si dovrà evitare che i grossi rulli vibranti operino entro una distanza inferiore a 1,5 m dai paramenti della terra rinforzata o flessibili in genere.

A tergo dei manufatti si useranno mezzi di compattazione leggeri quali piastre vibranti, rulli azionati a mano, provvedendo a garantire i requisiti di deformabilità e addensamento richiesti anche operando su strati di spessore ridotto.

Nella formazione di tratti di rilevato rimasti in sospeso per la presenza di tombini, canali, cavi, ecc. si dovrà garantire la continuità con la parte realizzata impiegando materiali e livelli di compattazione identici.

Durante la costruzione dei rilevati si dovrà disporre in permanenza di apposite squadre e mezzi di manutenzione per rimediare ai danni causati dal traffico di cantiere oltre a quelli dovuti alla pioggia e al gelo.

Condizioni climatiche

La costruzione di rilevati in presenza di gelo o di pioggia persistenti, non sarà consentita in linea generale, fatto salvo particolari deroghe da parte della Direzione Lavori, limitatamente a quei materiali meno suscettibili all'azione del gelo e delle acque meteoriche (es.: pietrame).

Nella esecuzione di porzioni di rilevati non stradali con terre ad elevato contenuto della frazione coesiva si procederà, per il costipamento, mediante rulli a punte e carrelli pigiatori gommati. che consentono di chiudere la superficie dello strato in lavorazione in caso di pioggia.

Alla ripresa del lavoro la stessa superficie dovrà essere convenientemente erpicata provvedendo eventualmente a rimuovere lo strato superficiale rammollito.

Sottofondi

II sottofondo è il volume di terra nel quale risultano ancora sensibili le sollecitazioni indotte dal traffico stradale e trasmesse dalla pavimentazione; rappresenta la zona di transizione fra il terreno in sito (nelle sezioni in trincea o a raso campagna) ovvero tra il rilevato e la pavimentazione.

Questo strato (strato più superficiale del rilevato o bonifica del fondo naturale di trincea su cui poggia la pavimentazione), detto "strato di sottofondo" deve consentire, inoltre, per mezzo delle sue proprietà fisiche e meccaniche e tenuto conto dello spessore:

- di conferire al supporto della pavimentazione, in ogni suo punto, una portanza sufficiente a garantire i livelli di stabilità e di funzionalità ammessi in progetto per la soprastruttura (omogeneizzazione della portanza);
- di proteggere, in fase di costruzione, gli strati sottostanti dall'infiltrazione d'acqua di pioggia e, durante l'esercizio, lo strato di fondazione soprastante dalle risalite di fino inquinante; quest'ultima funzione può essere assegnata ad uno strato ad hoc (in sabbia) o ad un geotessile non tessuto.

In termini generali, lo spessore totale dello strato di sottofondo (da realizzare, a seconda dei casi, con la stesa ed il costipamento di uno o più strati) dipende dalla natura del materiale utilizzato, dalla portanza del supporto e da quella assunta in progetto per il piano di posa della soprastruttura.

Per la scelta del materiale e per i provvedimenti costruttivi occorre tenere conto, inoltre, dei rischi d'imbibizione dello strato (derivanti dalla presenza di una falda superficiale), delle condizioni climatiche previste in fase costruttiva (precipitazioni) ed in fase di esercizio (gelo), nonché del prevedibile traffico dei mezzi di cantiere e delle necessità connesse alla costruzione della pavimentazione.

Inoltre, occorre considerare che non tutti i materiali adottati per la costruzione dei rilevati possono essere impiegati per realizzare strati di sottofondo:

- in ogni caso, la regolarità richiesta per il piano di posa della pavimentazione porta ad escludere materiali con elementi maggiori di D=100 mm;
- nel caso in cui si impieghino materiali non legati, per ottenere le proprietà meccaniche e l'impermeabilità richieste per gli strati, occorre utilizzare terre granulari, con assortimento granulometrico ben graduato (curve compatte), costituite preferibilmente da elementi a spigoli vivi, dotate di poco fino (passante allo 0,075 mm minore del 12%) e non plastiche (IP<6).

Fondazioni Stradali in Ghiaia o Pietrisco e Sabbia

Le fondazioni con misti di ghiaia o pietrisco e sabbia dovranno essere formate con uno strato di materiale di spessore uniforme e di altezza proporzionata sia alla natura del sottofondo che alle caratteristiche del traffico. Di norma lo spessore dello strato da cilindrare non dovrà essere inferiore a cm 20.

Se il materiale lo richiede per scarsità di legante, sarà necessario correggerlo con materiale adatto, aiutandone la penetrazione mediante leggero innaffiamento, tale che l'acqua non arrivi al sottofondo.

Le cilindrature dovranno essere condotte procedendo dai fianchi verso il centro. A lavoro finito la superficie dovrà risultare parallela a quella prevista per il piano viabile e non dovrà discostarsi dalla sagoma di progetto per più di 5 cm, nei limiti della tolleranza del 5 % in più o meno, purché la differenza si presenti solo saltuariamente.

I materiali impiegati dovranno comunque rispondere ai requisiti prescritti nel presente Capitolato Speciale ed approvati dalla Direzione dei Lavori.

Massicciata in misto granulometrico a stabilizzazione meccanica

Per le strade in terra stabilizzate da eseguirsi con misti granulometrici senza aggiunta di leganti, si adopererà un'idonea miscela di materiali a granulometria continua a partire dal limo argilla da mm 0,07 sino alla ghiaia (ciottoli) o pietrisco con dimensione massima di 50 mm; la relativa curva granulometrica dovrà essere contenuta tra le curve limiti che delimitano il fuso di Talbot.

Lo strato dovrà avere un indice di plasticità tra 6 e 9 per dare garanzie che né la sovrastruttura si disgreghi né, quando la superficie sia bagnata, venga incisa dalle ruote, ed in modo da realizzare un vero e proprio calcestruzzo d'argilla con idoneo scheletro litico. A tale fine si dovrà altresì avere un limite di liquidità inferiore a 35 ed un C.B.R. saturo a 2,5 mm di penetrazione non inferiore al 50%. Lo spessore dello strato stabilizzato sarà determinato in base alla portanza anche del sottofondo ed ai carichi che dovranno essere sopportati mediante la prova di punzonamento C.B.R. su campione compattato preventivamente con il metodo Proctor.

Il materiale granulometrico tanto che sia tout-venant di cava o di frantoio, tanto che provenga da banchi alluvionali opportunamente vagliati il cui scavo debba venir corretto con materiali di aggiunta, ovvero parzialmente frantumati per assicurare un migliore ancoraggio reciproco degli elementi del calcestruzzo di argilla, deve essere steso in cordoni lungo la superficie stradale. Successivamente si procederà al mescolamento per ottenere una buona omogeneizzazione mediante i motograders ed alla contemporanea stesura sulla superficie stradale. Infine, dopo conveniente umidificazione in relazione alle condizioni ambientali, si compatterà lo strato con rulli gommati o vibranti sino ad ottenere una densità in sito non inferiore al 95% di quella massima ottenuta con la prova AASHO modificata.

Controlli nelle Lavorazioni per il Corpo Stradale

In corso d'opera, sia per le necessità connesse alla costruzione degli strati in terra, particolarmente per

quanto riguarda il costipamento, sia per evidenziare che non abbiano a verificarsi derive nella qualità dei materiali, devono essere effettuate prove di controllo su campioni prelevati in contraddittorio con la Direzione dei lavori

Il numero dei campioni dipende dall'eterogeneità dei terreni interessati; per ogni approvvigionamento omogeneo la numerosità delle prove di attitudine deve rispettare le norme vigenti.

8.2 Formazione di strati in misto granulare

Caratteristiche dei materiali

Inerti

Dovrà essere utilizzata una miscela di aggregati lapidei di primo impiego eventualmente corretta mediante l'aggiunta o la sottrazione di determinate frazioni granulometriche per migliorarne le proprietà fisico meccaniche.

Non saranno accettati per la formazione della fondazione stradale materiali provenienti da costruzione e demolizione (materiali riciclati).

Saranno impiegati elementi lapidei definiti in due categorie:

- aggregato grosso
- aggregato fino

L'aggregato grosso può essere costituito da elementi ottenuti dalla frantumazione di rocce di cava massive o di origine alluvionale, da elementi naturali a spigoli vivi o arrotondati. Tali elementi possono essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella Tabella 1

§Tabella 1 AGGREGATO GROSSO

EXTRAURBANE SECONDARIE E URBANE DI SCORRIMENTO				
Indicatori di qualità			Strato di fondazione stradale	
Parametro	Normativa	Unità di misura		
Los Angeles	UNI EN 1097-2 CNR 34/73	%	≤ 30	
Micro deval Umida	UNI EN 1097-1 CNR 109/85	%	-	
Quantità di frantumato	-	%	> 30	
Dimensione max	UNI EN 933-1 CNR 23/71	mm	63	
Sensibilità al gelo	UNI EN 1367-1 CNR 80/80	%	≤ 20	

L'aggregato fino deve essere costituito da elementi naturali o di frantumazione che possiedano le caratteristiche riassunte nella Tabella 2

Tabella 2 AGGREGATO FINO

EXTRAURBANE SECONDARIE E URBANE DI SCORRIMENTO				
Passante al crivello UNI n. 5				
Indicatori di qualità Strato di fondazione stradale				
Parametro	Normativa	Unità di misura		
Equivalente in Sabbia	UNI EN 933-8 CNR 27/72	%	≥ 40	
Indice di Plasticità	UNI CEN ISO/TS 17892-12	%	N.P.	
Limite Liquido	UNI CEN ISO/TS 17892-12	%	≤ 25	
Passante allo 0.075	UNI EN 933-1 CNR 75/80	%	≤ 6	

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti.

La miscela di aggregati da adottarsi per la realizzazione del misto granulare deve avere una composizione granulometrica contenuta nei fusi riportati in Tabella 3

Tabella 3

Serie crivelli e setacci UNI		Passante %
Crivello	70	100
Crivello	30	70 - 100
Crivello	15	

Crivello	10	30 - 70
Crivello	5	23 - 55
Setaccio	2	15 - 40
Setaccio	0.4	8 - 25
Setaccio	0.075	2 - 15

La dimensione massima dell'aggregato non deve in ogni caso superare la metà dello spessore dello strato di misto granulare ed il rapporto tra il passante al setaccio UNI 0.075 mm ed il passante al setaccio UNI 0.4 mm deve essere inferiore a 2/3.

L'indice di portanza CBR (UNI EN 13286-47) dopo quattro giorni di imbibizione in acqua (eseguito sul materiale passante al crivello UNI 25 mm) non deve essere minore del valore assunto per il calcolo della pavimentazione ed in ogni caso non minore di 30. È inoltre richiesto che tale condizione sia verificata per un intervallo di ±2% rispetto all'umidità ottimale di costipamento.

Il modulo resiliente (MR) della miscela impiegata deve essere quello inserito nel progetto della pavimentazione e viene determinato applicando la norma AASHTO T294 o altra metodologia indicata dal progettista.

Il modulo di deformazione (Md) dello strato deve essere quello inserito nel progetto della pavimentazione superiore a 80 MPa e viene determinato impiegando la metodologia indicata nella norma (CNR 146/92)

Il modulo di reazione (k) dello strato deve essere quello inserito nel calcolo della pavimentazione e viene determinato impiegando la metodologia indicata nella norma (CNR 92/83). I diversi componenti e, in particolare le sabbie, debbono essere del tutto privi di materie organiche, solubili, alterabili e friabili.

L'Impresa è tenuta a comunicare alla Direzione Lavori, con congruo anticipo rispetto all'inizio delle lavorazioni e per ciascun cantiere di produzione, la composizione dei misti granulari che intende adottare. Per ogni provenienza del materiale, ciascuna miscela proposta deve essere corredata da una documentazione dello studio di composizione effettuato, che deve comprendere i risultati delle prove sperimentali, effettuate presso un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti, attestanti il possesso dei requisiti elencati al paragrafo 2.1. Lo studio di laboratorio deve comprendere la determinazione della curva di costipamento con energia AASHO modificata (CNR69/78).

Una volta accettato da parte della Direzione Lavori lo studio delle miscele, l'Impresa deve rigorosamente attenersi ad esso.

Confezionamento del misto granulare

L'Impresa deve indicare, per iscritto, le fonti di approvvigionamento, le aree ed i metodi di stoccaggio (con i provvedimenti che intende adottare per la protezione dei materiali dalle acque di ruscellamento e da possibili inquinamenti), il tipo di lavorazione che intende adottare, il tipo e la consistenza dell'attrezzatura di cantiere che verrà impiegata.

Posa in opera del misto granulare

Il piano di posa dello strato deve avere le quote, la sagoma, i requisiti di portanza prescritti ed essere ripulito da materiale estraneo. Il materiale va steso in strati di spessore finito non superiore a 25 cm e non inferiore a 10 cm e deve presentarsi, dopo costipamento, uniformemente miscelato in modo da non presentare segregazione dei suoi componenti. L'eventuale aggiunta di acqua, per raggiungere l'umidità prescritta in funzione della densità, è da effettuarsi mediante dispositivi spruzzatori. La stesa va effettuata con finitrice o con grader appositamente equipaggiato.

Tutte le operazioni anzidette sono sospese quando le condizioni ambientali (pioggia, neve, gelo) siano tali da danneggiare la qualità dello strato stabilizzato.

Quando lo strato finito risulti compromesso a causa di un eccesso di umidità o per effetto di danni dovuti al gelo, esso deve essere rimosso e ricostituito a cura e spese dell'Impresa.

Il materiale pronto per il costipamento deve presentare in ogni punto la prescritta granulometria. Per il costipamento e la rifinitura verranno impiegati rulli vibranti, rulli gommati o combinati, tutti semoventi.

Per ogni cantiere, l'idoneità dei mezzi d'opera e le modalità di costipamento devono essere, determinate, in contraddittorio con la Direzione Lavori, prima dell'esecuzione dei lavori, mediante una prova sperimentale di campo, usando le miscele messe a punto per quel cantiere.

Il costipamento di ciascuno strato deve essere eseguito sino ad ottenere una densità in sito non inferiore al 98% della densità massima fornita dalla prova AASHO modificata.

Controlli

Il controllo della qualità dei misti granulari e della loro posa in opera, deve essere effettuato mediante prove di laboratorio su materiali costituenti, sul materiale prelevato in sito al momento della stesa oltre che con prove sullo stato finito.

8.3 Formazione di strati in misto cementato

Il misto cementato per fondazione o per base sarà costituito da una miscela di aggregati lapidei di primo impiego, impastata con legante idraulico cemento ed acqua in impianto centralizzato con dosatori a peso o a volume, da stendersi in unico strato dello spessore indicato in progetto.

Non saranno accettati per la formazione della fondazione stradale materiali provenienti da costruzione e demolizione (materiali riciclati). La miscela deve assumere, dopo un adeguato tempo di stagionatura, una resistenza meccanica durevole ed apprezzabile mediante prove eseguibili su provini di forma assegnata, anche in presenza di acqua o gelo.

Caratteristiche dei materiali

Inerti

Saranno impiegati elementi lapidei definiti in due categorie:

- aggregato grosso
- · aggregato fino

L'aggregato grosso deve essere costituito da elementi ottenuti dalla frantumazione di rocce lapidee, da elementi naturali tondeggianti, da elementi naturali tondeggianti frantumati, da elementi naturali a spigoli vivi. Tali elementi potranno essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella Tabella 1

Tabella 1 - AGGREGATO GROSSO

abelia 1 Accidento circoso					
Parametro	Normativa	Unità di misura	Valore		
Los Angeles	UNI EN 1097-2 CNR 34/73	%	≤ 30		
Quantità di frantumato	-	%	≥ 30		
Dimensione max	UNI EN 933-1 CNR 23/71	mm	40		
Sensibilità al gelo	UNI EN 1367-1 CNR 80/80	%	≤ 30		
Passante al setaccio 0.075	UNI EN 933-1 CNR 75/80	%	≤ 1		
Contenuto di:					
-Rocce reagenti con alcali del		%	≤ 1		
cemento					

L'aggregato fino deve essere costituito da elementi naturali o di frantumazione che possiedano le caratteristiche riassunte nella Tabella 2

Tabella 2 AGGREGATO FINO

abella 2 Addreda 10 F1110				
Parametro	Normativa	Unità di misura	Valore	
Equivalente in Sabbia	UNI EN 933-8 CNR 27/72	%	≥ 30; ≤ 60	
Limite Liquido	UNI CEN ISO/TS 17892-12	%	≤ 25	
Indice Plastico	UNI CEN ISO/TS 17892-12	%	NP	
Contenuto di:				
- Rocce tenere, alterate o scistose	CNR 104/84	%	≤ 1	
- Rocce degradabili o solfatiche	CNR 104/84	%	≤1	
Rocce reagenti con alcali del cemento	CNR 104/84	%	≤1	

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti.

Legante

Dovranno essere impiegati i seguenti tipi di cemento, elencati nella norma UNI EN 197-1:

- tipo I (Portland);
- tipo II (Portland composito);
- tipo III (d'altoforno);
- tipo IV (pozzolanico);
- tipo V (composito).

I cementi utilizzati dovranno rispondere ai requisiti previsti dalla L. 595/65. Ai fini dell'accettazione, prima

dell'inizio dei lavori, i cementi utilizzati dovranno essere controllati e certificati come previsto da marcatura CE e dal D.M. 12/07/99 n. 314. Tale certificazione sarà rilasciata dall'Istituto Centrale per la Industrializzazione e la Tecnologia Edilizia (I.C.I.T.E.), o da altri organismi autorizzati ai sensi del D.M. 12/07/99 n. 314.

Acqua

L'acqua dovrà essere esente da impurità dannose, oli, acidi, alcali, materia organica e qualsiasi altra sostanza nociva.

La quantità di acqua nella miscela sarà quella corrispondente all'umidità ottima di costipamento (CNR 69 – 1978) con una variazione compresa entro ±2% del peso della miscela per consentire il raggiungimento delle resistenze indicate di seguito.

Formazione e confezione delle miscele

Le miscele dovranno essere confezionate in impianti fissi automatizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

Gli impianti dovranno comunque garantire uniformità di produzione ed essere in grado di realizzare miscele del tutto rispondenti a quelle di progetto.

La dosatura degli aggregati dovrà essere effettuata sulla base di almeno 4 classi con predosatori in numero corrispondente alle classi impiegate.

La zona destinata all'ammannimento degli aggregati sarà preventivamente e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati.

Inoltre i cumuli delle diverse classi dovranno essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori eseguita con la massima cura.

La miscela di aggregati (misto granulare) da adottarsi per la realizzazione del misto cementato deve avere una composizione granulometrica contenuta nel fuso riportato in Tabella 3.

Tabella 3

Serie crivelli e setacci UNI		Passante % - Strade extraurbane secondarie
Crivello	40	100
Crivello	30	-
Crivello	25	65 - 100
Crivello	15	45 - 78
Crivello	10	35 - 68
Setaccio	5	23 - 53
Setaccio	2	14 - 40
Setaccio	0.4	6 - 23
Setaccio	0.18	2 - 15
Setaccio	0.075	-

In particolare le miscele adottate dovranno possedere i requisiti riportati nella Tabella 4.

Tabella 4

Parametro Normativa		Valore
Resistenza a compressione a 7gg	CNR 29/72	$2.5 \leq Rc \leq 4.5 \text{ N/mm}^2$
Resistenza a trazione indiretta a 7 gg (Prova Brasiliana)	UNI EN 12390-6 CNR 97/84	$Rt \geq 0.25 \ N/mm^2$

Accettazione delle miscele

L'Impresa è tenuta a comunicare alla Direzione Lavori, con congruo anticipo rispetto all'inizio delle lavorazioni e per ciascun cantiere di produzione, la composizione delle miscele che intende adottare. Ciascuna composizione proposta deve essere corredata da una completa documentazione dello studio di composizione effettuato, che non dovrà essere più vecchio di un anno.

Una volta accettato da parte della Direzione Lavori lo studio delle miscele, l'Impresa deve rigorosamente attenersi ad esso.

Nella curva granulometrica sono ammesse variazioni delle singole percentuali, per l'aggregato grosso di ± 5 punti e di ± 2 punti per l'aggregato fino.

In ogni caso non devono essere superati i limiti del fuso. Per la percentuale di cemento nelle miscele è ammessa una variazione di \pm 0.5%.

Confezionamento delle miscele

Il misto cementato deve essere confezionato mediante impianti fissi automatizzati, di idonee caratteristiche,

mantenuti sempre perfettamente funzionanti in ogni loro parte.

L'impianto deve comunque garantire uniformità di produzione ed essere in grado di realizzare miscele rispondenti a quelle indicate nello studio presentato ai fini dell'accettazione.

La zona destinata allo stoccaggio degli aggregati deve essere preventivamente e convenientemente sistemata per evitare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati. I cumuli delle diverse classi devono essere nettamente separati tra di loro e l'operazione di rifornimento nei pre-dosatori eseguita con la massima cura. Non è consentito il mescolamento di cementi diversi per tipo, classe di resistenza o provenienza. Il cemento e le aggiunte dovranno essere adeguatamente protetti dall'umidità atmosferica e dalle impurità.

Preparazione delle superfici di stesa

La miscela verrà stesa sul piano finito dello strato precedente dopo che sia stata accertata dalla Direzione Lavori la rispondenza di quest'ultimo ai requisiti prescritti. Ogni depressione, avvallamento o ormaia presente sul piano di posa dev'essere corretta prima della stesa. Prima della stesa è inoltre necessario verificare che il piano di posa sia sufficientemente umido e, se necessario, provvedere alla sua bagnatura evitando tuttavia la formazione di una superficie fangosa.

Posa in opera delle miscele

La stesa verrà eseguita impiegando macchine finitrici. Il tempo massimo tra l'introduzione dell'acqua nella miscela del misto cementato e l'inizio della compattazione non dovrà superare i 60 minuti.

Le operazioni di compattazione dello strato devono essere realizzate con apparecchiature e sequenze adatte a produrre il grado di addensamento e le prestazioni richieste. La stesa della miscela non deve di norma essere eseguita con temperature ambiente inferiori a 0°C e mai sotto la pioggia.

Nel caso in cui le condizioni climatiche (temperatura, soleggiamento, ventilazione) comportino una elevata velocità di evaporazione, è necessario provvedere ad una adeguata protezione delle miscele sia durante il trasporto che durante la stesa.

Il tempo intercorrente tra la stesa di due strisce affiancate non deve superare di norma le due ore per garantire la continuità della struttura.

Particolari accorgimenti devono adottarsi nella formazione dei giunti longitudinali che andranno protetti con fogli di polietilene o materiale similare. Il giunto di ripresa deve essere ottenuto terminando la stesa dello strato a ridosso di una tavola e togliendo la tavola al momento della ripresa della stesa. Se non si fa uso della tavola si deve, prima della ripresa della stesa, provvedere a tagliare l'ultima parte dello strato precedente, in modo che si ottenga una parete perfettamente verticale. Non devono essere eseguiti altri giunti all'infuori di quelli di ripresa.

Protezione superficiale dello strato finito

Subito dopo il completamento delle opere di costipamento e finitura dello strato, deve essere applicato un velo protettivo di emulsione bituminosa acida al 55% in ragione di 1-2 da N/m² (in relazione al tempo ed alla intensità del traffico di cantiere cui potrà venire sottoposto) e successivo spargimento di sabbia.

Il tempo di maturazione protetta non dovrà essere inferiore a 72 ore, durante le quali il misto cementato dovrà essere protetto dal gelo.

Il transito di cantiere potrà essere ammesso sullo strato a partire dal terzo giorno dopo quello in cui è stata effettuata la stesa e limitatamente ai mezzi gommati. Aperture anticipate sono consentite solo se previste nella determinazione della resistenze raggiunta dal misto.

Strati eventualmente compromessi dalle condizioni meteorologiche o da altre cause devono essere rimossi e sostituiti a totale cura e spese dell'Impresa.

Controlli nelle lavorazioni per strati in misto cementato

Il controllo della qualità dei misti cementati e della loro posa in opera deve essere effettuato mediante prove di laboratorio sui materiali costituenti, sulla miscela prelevata allo stato fresco al momento della stesa, sulle carote estratte dalla pavimentazione e con prove in situ. L'ubicazione dei prelievi e la frequenza delle prove sono indicati nella Tabella 5

Tabella 5

Tabella 5					
EXTRAURBANE SECONDARIE E URBANE DI SCORRIMENTO					
Controllo dei materiali e verifica prestazionale					
TIPO DI CAMPIONE	UBICAZIONE PRELIEVO	FREQUENZA PROVE		REQUISITI RICHIESTI	
Aggregato grosso	Impianto	Settimanale oppure 2500 m ³ di stesa	ogni	Rif. Tabella 1	
Aggregato fino	Impianto	Settimanale oppure	ogni	Rif. Tabella 2	

		2500 m ³ di stesa	
Acqua	Impianto	Iniziale	Rif. paragrafo 1
Cemento	Impianto	Iniziale	Rif. paragrafo 1
Misto cementato fresco	Vibrofinitrice	Giornaliera oppure ogni 5.000 m² di stesa	Curva granulometrica di progetto: contenuto di cemento
Misto cementato fresco (*)	Vibrofinitrice	Giornaliera oppure ogni 5.000 m² di stesa	Resistenza a compressione: resistenza a trazione indiretta
Carote per spessori	Pavimentazione	Ogni 100m di fascia di stesa	Spessore previsto in progetto
Strato finito (densità in sito)	Strato finito	Giornaliera oppure ogni 5.000 m² di stesa	98% del valore risultante dallo studio della miscela
Strato finito (portanza)	Strato finito o Pavimentazione	Ogni m di fascia stesa	Prestazioni previste in progetto
(*) il controllo sul misto cementato fresco può sostituire quello sullo strato finito			

Il prelievo del misto cementato fresco avverrà in contraddittorio al momento della stesa. Sui campioni saranno effettuati, presso un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti, i controlli della percentuale di cemento, della distribuzione granulometrica dell'aggregato; i valori misurati in sede di controllo dovranno essere conformi a quelli dichiarati nella documentazione presentata prima dell'inizio dei lavori.

Lo spessore dello strato viene determinato, per ogni tratto omogeneo di stesa, facendo la media delle misure (quattro per ogni carota) rilevate sulle carote estratte dalla pavimentazione, scartando i valori con spessore in eccesso, rispetto a quello di progetto, di oltre il 5%. Per spessori medi inferiori a quelli di progetto viene applicata, per tutto il tratto omogeneo, una detrazione del 2,5% del prezzo di elenco per ogni mm di materiale mancante. Per carenze superiori al 20% dello spessore di progetto si impone la rimozione dello strato e la successiva ricostruzione a spese dell'Impresa.

Sullo strato finito saranno effettuati i controlli delle densità in sito e della portanza.

A compattazione ultimata la densità in sito, nel 95% dei prelievi, non deve essere inferiore al 98% del valore di riferimento (ottimo) misurato in laboratorio sulla miscela di progetto e dichiarato prima dell'inizio dei lavori. Le misure della densità sono effettuate secondo quanto previsto dal B.U. CNR N. 22.

Per valori di densità inferiori a quello previsto viene applicata una detrazione per tutto il tratto omogeneo a cui il valore si riferisce:

- del 10 % dell'importo dello strato per densità in sito comprese tra 95 e 98 % del valore di riferimento;
- del 20 % dell'importo dello strato per densità in sito comprese tra 92 e 95 % del valore di riferimento.

La misura della portanza dovrà accertare che le prestazioni dello strato finito soddisfino le richieste degli elaborati di progetto e siano conformi a quanto dichiarato prima dell'inizio dei lavori nella documentazione presentata dall'Impresa, ai sensi di quanto previsto all'articolo "Accettazione delle miscele". La metodologia di indagine impiegata dovrà essere tale da fornire, parametri di controllo identici, o comunque direttamente confrontabili, con quelli utilizzati nel calcolo della pavimentazione. A tale scopo, sono ammesse sia prove effettuate direttamente sullo strato (prove di carico su piastra), che prove effettuate sullo strato ricoperto.

Al momento della costruzione degli strati di pavimentazione sovrastanti, la media dei valori di portanza del misto cementato su ciascun tronco omogeneo, non dovrà essere inferiore a quella prevista in progetto. Per misure di portanza inferiori fino al 10%, rispetto ai valori di progetto, al misto cementato ed a tutti gli strati sovrastanti, viene applicata una detrazione del 10% del prezzo. Per carenze fino al 20%, al misto cementato ed a tutti gli strati sovrastanti viene applicata una detrazione del 20% del prezzo, mentre per carenze superiori al 20%, il tratto considerato deve essere demolito e ricostruito.

In alternativa alle misure di portanza, è ammesso il controllo basato sulla resistenza a compressione e sulla resistenza a trazione indiretta del materiale prelevato all'atto della stesa. La resistenza a compressione di ciascun prelievo sarà ottenuta come media dei valori di 4 provini, confezionati e portati a rottura secondo quanto previsto dal B.U. CNR N. 29. La resistenza a trazione indiretta di ciascun prelievo sarà ottenuta come media dei valori di 4 provini, confezionati secondo quanto previsto dal B.U. CNR N. 29 e portati a rottura secondo quanto previsto dal B.U. CNR N. 97.

I valori di resistenza, per ciascun tratto omogeneo, dovranno essere conformi a quanto indicato nella documentazione presentata prima dell'inizio dei lavori. Per valori di resistenza inferiori fino al 10%, rispetto ai valori di progetto, al misto cementato ed a tutti gli strati sovrastanti, viene applicata una detrazione del 10% del prezzo. Per carenze fino al 20%, al misto cementato ed a tutti gli strati sovrastanti viene applicata una detrazione del 20% del prezzo, mentre per carenze superiori al 20%, il tratto considerato deve essere demolito e ricostruito.

Se lo strato risulta già sanzionato per carenze dovute agli strati inferiori la detrazione verrà applicata solo per

l'eventuale differenza, estesa agli strati sovrastanti.

8.4 Caratteristiche dei materiali

Inerti

Saranno impiegati elementi lapidei definiti in due categorie:

- aggregato grosso
- aggregato fino

L'aggregato grosso deve essere costituito da elementi ottenuti dalla frantumazione di rocce lapidee, da elementi naturali tondeggianti, da elementi naturali tondeggianti frantumati, da elementi naturali a spigoli vivi. Tali elementi potranno essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella Tabella 1

Tabella 1 - AGGREGATO GROSSO

Parametro	Normativa	Unità di misura	Valore
Los Angeles	UNI EN 1097-2 CNR 34/73	%	≤ 30
Quantità di frantumato	-	%	≥ 30
Dimensione max	UNI EN 933-1 CNR 23/71	mm	40
Sensibilità al gelo	UNI EN 1367-1 CNR 80/80	%	≤ 30
Passante al setaccio 0.075	UNI EN 933-1 CNR 75/80	%	≤ 1
Contenuto di:			
-Rocce reagenti con alcali del		%	≤ 1
cemento			

L'aggregato fino deve essere costituito da elementi naturali o di frantumazione che possiedano le caratteristiche riassunte nella Tabella 2

Tabella 2 AGGREGATO FINO

abelia 2 Addition 1 1110				
Parametro	Normativa	Unità di misura	Valore	
Equivalente in Sabbia	UNI EN 933-8 CNR 27/72	%	≥ 30; ≤ 60	
Limite Liquido	UNI CEN ISO/TS 17892-12	%	≤ 25	
Indice Plastico	UNI CEN ISO/TS 17892-12	%	NP	
Contenuto di:				
- Rocce tenere, alterate o scistose	CNR 104/84	%	≤1	
- Rocce degradabili o solfatiche	CNR 104/84	%	≤1	
Rocce reagenti con alcali del cemento	CNR 104/84	%	≤1	

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti.

Legante

Dovranno essere impiegati i seguenti tipi di cemento, elencati nella norma UNI EN 197-1:

- tipo I (Portland);
- tipo II (Portland composito);
- tipo III (d'altoforno);
- tipo IV (pozzolanico);
- tipo V (composito).

I cementi utilizzati dovranno rispondere ai requisiti previsti dalla L. 595/65. Ai fini dell'accettazione, prima dell'inizio dei lavori, i cementi utilizzati dovranno essere controllati e certificati come previsto da marcatura CE e dal D.M. 12/07/99 n. 314. Tale certificazione sarà rilasciata dall'Istituto Centrale per la Industrializzazione e la Tecnologia Edilizia (I.C.I.T.E.), o da altri organismi autorizzati ai sensi del D.M. 12/07/99 n. 314.

Acqua

L'acqua dovrà essere esente da impurità dannose, oli, acidi, alcali, materia organica e qualsiasi altra sostanza nociva.

La quantità di acqua nella miscela sarà quella corrispondente all'umidità ottima di costipamento (CNR 69 -

1978) con una variazione compresa entro $\pm 2\%$ del peso della miscela per consentire il raggiungimento delle resistenze indicate di sequito.

Formazione e confezione delle miscele

Le miscele dovranno essere confezionate in impianti fissi automatizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

Gli impianti dovranno comunque garantire uniformità di produzione ed essere in grado di realizzare miscele del tutto rispondenti a quelle di progetto.

La dosatura degli aggregati dovrà essere effettuata sulla base di almeno 4 classi con predosatori in numero corrispondente alle classi impiegate.

La zona destinata all'ammannimento degli aggregati sarà preventivamente e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati.

Inoltre i cumuli delle diverse classi dovranno essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori eseguita con la massima cura.

La miscela di aggregati (misto granulare) da adottarsi per la realizzazione del misto cementato deve avere una composizione granulometrica contenuta nel fuso riportato in Tabella 3.

Tabella 3

i abelia b		
Serie crivelli e setacci UNI		Passante % - Strade extraurbane secondarie
Crivello	40	100
Crivello	30	-
Crivello	25	65 - 100
Crivello	15	45 - 78
Crivello	10	35 - 68
Setaccio	5	23 - 53
Setaccio	2	14 - 40
Setaccio	0.4	6 - 23
Setaccio	0.18	2 - 15
Setaccio	0.075	-

In particolare le miscele adottate dovranno possedere i requisiti riportati nella Tabella 4.

Tabella 4

Parametro	Normativa	Valore
Resistenza a compressione a 7gg	CNR 29/72	$2.5 \leq Rc \leq 4.5 \text{ N/mm}^2$
Resistenza a trazione indiretta a 7 gg (Prova Brasiliana)	UNI EN 12390-6 CNR 97/84	$Rt \geq 0.25 \; N/mm^2$

8.5 Formazione di strati in conglomerato bituminoso a caldo

I conglomerati bituminosi a caldo tradizionali sono miscele, dosate a peso o a volume, costituite da aggregati lapidei di primo impiego, bitume semisolido, additivi ed eventuale conglomerato riciclato.

Le miscele impiegate dovranno essere qualificate in conformità al Regolamento (UE) n. 305/2011 del Parlamento Europeo e del Consiglio del 9 marzo 2011 che fissa le condizioni armonizzate per la commercializzazione dei prodotti da costruzione. Ciascuna fornitura dovrà essere accompagnata dalla marcatura CE attestante la conformità all'appendice ZA della norma europea armonizzata UNI EN 13108-1.

Strati di base - Binder - Usura

Inerti

Gli aggregati lapidei, di primo impiego, costituiscono la fase solida dei conglomerati bituminosi a caldo tradizionali. Gli aggregati di primo impiego risultano composti dall'insieme degli aggregati grossi (trattenuti al crivello UNI n. 5), degli aggregati fini e del filler che può essere proveniente dalla frazione fina o di additivazione.

L'aggregato grosso deve essere costituito da elementi ottenuti dalla frantumazione di rocce lapidee, da elementi naturali tondeggianti, da elementi naturali tondeggianti frantumati, da elementi naturali a spigoli vivi. Tali elementi potranno essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella Tabella 1.

Tabella 1 - AGGREGATO GROSSO

TUDCHU I AGGILLOATO GILOS	,50				
Trattenuto al crivello UNI n.	5				
Indicatori di qualità			Strato pavimentazione		
Parametro	Normativa	Unità di misura	Base	Binder	Usura
Resistenza alla frammentazione	UNI EN 1097-2 CNR 34/73	%	≤ 30	≤ 30	≤ 20
Los Angeles (*)					
Micro Deval Umida (*)	UNI EN 1097-1 CNR 109/85	%	≤ 25	≤ 25	≤ 15
Quantità di frantumato	-	%	≥ 70	≥ 80	100
Dimensioni max	UNI EN 933-1 CNR 23/71	mm	40	30	20
Sensibilità al gelo	UNI EN 1367-1 CNR 80/80	%	≤ 30	≤ 30	≤ 30
Spogliamento	UNI EN 12697-11 CNR 138/92	%	≤ 5	≤ 5	0
Passante allo 0.0075	UNI EN 933-1 CNR 75/80	%	≤ 1	≤ 1	≤ 1
Indice appiattimento	UNI EN 933-5 CNR 95/84	%		≤ 30	≤ 30
Porosità	CNR 65/78	%		≤ 1,5	≤ 1,5
CLA	UNI EN 1097-8 CNR 140/92	%			≥ 40
/*/ II d.: d	Annual Missa David Harida and disc	lana /6: /6:		description of the	the traditional

^(*) Uno dei due valori dei coeff. Los Angeles e Micro Deval Umida può risultare maggiore (fino a due punti) rispetto al limite indicato, purché la loro somma risulti inferiore o uguale alla somma dei valori limite indicati.

Nello strato di usura la miscela finale degli aggregati deve contenere una frazione grossa di natura basaltica o porfirica, con $CLA \ge 43$, pari almeno al 30% del totale.

In alternativa all'uso del basalto o del porfido si possono utilizzare inerti porosi naturali (vulcanici) od artificiali (argilla espansa "resistente" o materiali similari, scorie d'altoforno, loppe, ecc.) ad elevata rugosità superficiale ($CLA \ge 50$) di pezzatura 5/15 mm, in percentuali in peso comprese tra il 20% ed il 30% del totale, ad eccezione dell'argilla espansa che deve essere di pezzatura 5/10 mm, con percentuale di impiego in volume compresa tra il 25% ed il 35% degli inerti che compongono la miscela.

L'aggregato fino deve essere costituito da elementi naturali e di frantumazione. A seconda del tipo di strada, gli aggregati fini per conglomerati bituminosi a caldo tradizionali devono possedere le caratteristiche riassunte nella Tabella 2.

Tabella 2 - AGGREGATO FINO

Tabella 2 - AGGREGAT	LTINO				
Trattenuto al crivello U	JNI n. 5				
Indicatori di qualità	Stra	to pavimenta:	zione		
Parametro	Normativa	Unità di misura	Base	Binder	Usura
Equivalente in Sabbia	UNI EN 933-8 CNR 27/72	%	≥ 50	≥ 60	≤ 70
Indice di Plasticità	UNI CEN ISO/TS 17892-12	%	N.P.		
Limite Liquido	UNI CEN ISO/TS 17892-12	%	≤ 25		
Passante allo 0.075	UNI EN 933-1 CNR 75/80	%		≤ 2	≤ 2
Quantità di frantumato	UNI EN 1097-1 CNR 109/85	%		≤ 40	≥ 50

Per aggregati fini utilizzati negli strati di usura il trattenuto al setaccio 2 mm non deve superare il 10% qualora gli stessi provengano da rocce aventi un valore di $CLA \le 42$. Il filler, frazione passante al setaccio 0,075 mm, proviene dalla frazione fina degli aggregati oppure può essere costituito da polvere di roccia, preferibilmente calcarea, da cemento, calce idrata, calce idraulica, polvere di asfalto, ceneri volanti. In ogni caso il filler per conglomerati bituminosi a caldo tradizionali deve soddisfare i requisiti indicati in Tabella 3.

Tabella 3 - FILLER

	Indicatori di qualità			
Parametro	Normativa	Unità di misura	Base Binder Usura	
Spogliamento	CNR 138/92	%	≤ 5	
Passante allo 0.18	UNI EN 933-1 CNR 23/71	%	100	
Passante allo 0.075	UNI EN 933-1 CNR 75/80	%	≥ 80	
Indice di Plasticità	UNI CEN ISO/TS 17892-12		N.P.	
Vuoti Rigden	UNI EN 1097-7 CNR 123/88	%	30 - 45	
Stiffening Power Rapporto filler/bitume = 1,5	UNI EN 13179-1 CNR 122/88	Δ ΡΑ	≥ 5	

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti.

Legante

Il legante deve essere costituito da bitume semisolido (tal quale) ed eventualmente da quello proveniente dal conglomerato riciclato additivato con ACF (attivanti chimici funzionali).

I bitumi sono composti organici costituiti sostanzialmente da miscele di idrocarburi, completamente solubili in solfuro di carbonio e dotati di capacità legante. A seconda della temperatura media della zona di impiego il bitume deve essere del tipo 50/70 oppure 80/100 con le caratteristiche indicate nella Tabella 4, con preferenza per il 50/70 per le temperature più elevate.

Tabella 4 - BITUME

Parametro	Normativa	Unità di misura	tipo 50/70	tipo 80/100
Penetrazione a 25°C	UNI EN 1426 CNR 24/71	dmm	50-70	80-100
Punto di rammollimento	UNI EN 1427 CNR 35/73	°C	46-56	40-44
Punto di rottura (Fraass)	UNI EN 12593 CNR43/74	°	≤ - 8	≤ - 8
Solubilità	UNI EN 12592	%	≥ 99	≥ 99
Viscosità dinamica a 160°C, y=10 s ⁻¹	UNI EN 13302-2	Pa • s	≥ 0,15	≥ 0,10
Valori dopo RTFOT	UNI EN 12607-1			
Volatilità	UNI EN 12607-1 CNR 54/77	%	≤ 0,5	≤ 0,5
Penetrazione residua a 25 °C	UNI EN 1426 CNR 24/71	%	≥ 50	≥ 50
Incremento del punto di Rammollimento	UNI EN 1427 CNR 35/73	°C	≤ 9	≤ 9

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione del prodotto tramite certificazione attestante i requisiti indicati. Tale certificazione sarà rilasciata dal produttore o da un Laboratorio riconosciuto dal Ministero delle Infrastrutture e dei Trasporti.

Additivi

Gli additivi sono prodotti naturali o artificiali che, aggiunti all'aggregato o al bitume, consentono di migliorare le prestazioni dei conglomerati bituminosi.

Gli attivanti d'adesione, sostanze tensioattive che favoriscono l'adesione bitume – aggregato, sono additivi utilizzati per migliorare la durabilità all'acqua delle miscele bituminose.

Il loro dosaggio, da specificare obbligatoriamente nello studio della miscela, potrà variare a seconda delle condizioni di impiego, della natura degli aggregati e delle caratteristiche del prodotto.

La scelta del tipo e del dosaggio di additivo dovrà essere stabilita in modo da garantire le caratteristiche di resistenza allo spogliamento e di durabilità all'azione dell'acqua riportate nella Tabella 1, Tabella 7 e Tabella 8. In ogni caso, l'attivante di adesione scelto deve presentare caratteristiche chimiche stabili nel tempo anche se sottoposto a temperatura elevata (180 °C) per lunghi periodi (15 giorni).

L'immissione delle sostanze tensioattive nel bitume deve essere realizzata con attrezzature idonee, tali da garantire l'esatto dosaggio e la loro perfetta dispersione nel legante bituminoso. La presenza ed il dosaggio degli attivanti d'adesione nel bitume, vengono verificati mediante la prova di separazione cromatografica su strato sottile.

Gli attivanti chimici funzionali (ACF) impiegati per rigenerare le caratteristiche del bitume invecchiato contenuto nel conglomerato bituminoso da riciclare devono avere le caratteristiche chimico-fisiche riportate nella Tabella 5.

Il dosaggio varia in funzione della percentuale di conglomerato riciclato e delle caratteristiche del bitume in esso contenuto.

Per determinare la quantità di ACF da impiegare si deve preventivamente calcolare la percentuale teorica del bitume nuovo da aggiungere con la seguente espressione:

 $Pn = Pt - (Pv \times Pr)$

dove

Pn = percentuale di legante nuovo da aggiungere riferita al totale degli inerti;

Pt = percentuale totale di bitume nella miscela di inerti nuovi e conglomerato di riciclo;

Pv = percentuale di bitume vecchio (preesistente) riferita al totale degli inerti;

Pr = frazione di conglomerato riciclato rispetto al totale della miscela.

Il valore di Pt viene determinato con l'espressione:

Pt=0.035 a + 0.045 b + cd + f

dove

Pt = % di bitume in peso riferita alla miscela totale, espressa come numero intero;

a = % di aggregato trattenuto al setaccio UNI 2 mm;

b = % di aggregato passante al setaccio UNI 2 mm e trattenuto al setaccio 0,075 mm;

- c = % di aggregato passante al setaccio 0,075 mm;
- d = 0,15 per un passante al N. 200 compreso tra 11 e 15;
- d = 0,18 per un passante al N. 200 compreso tra 6 e 10;
- d = 0.20 per un passante al N. $200 \le 6$;
- f = parametro compreso normalmente fra 0,3 e 0,8, variabile in funzione dell'assorbimento degli inerti.
- Si procede quindi a costruire in un diagramma viscosità (a 60 °C) percentuale di rigenerante (rispetto al legante nuovo) una curva di viscosità con almeno tre punti misurati:
- K = viscosità della miscela bitume estratto più bitume aggiunto nelle proporzioni determinate con le formule precedenti, senza rigenerante.
- M = viscosità della miscela bitume estratto più bitume aggiunto in cui una parte del bitume nuovo è sostituita dall'agente rigenerante nella misura del 10% in peso rispetto al bitume aggiunto.
- F = viscosità della miscela simile alla precedente in cui una parte del bitume nuovo è sostituita dall'agente rigenerante nella misura del 20% in peso rispetto al bitume aggiunto.

Da questo diagramma mediante interpolazione lineare è possibile dedurre, alla viscosità di 2000 Pa•s, la percentuale di rigenerante necessaria.

L'immissione degli ACF nel bitume deve essere realizzata con attrezzature idonee, tali da garantire l'esatto dosaggio e la loro perfetta dispersione nel legante bituminoso.

La presenza degli ACF nel bitume viene accertata mediante la prova di separazione cromatografica su strato sottile.

Tabella 5 - ATTIVANTI CHIMICI FUNZIONALI

Parametro	Normativa	Unità di misura	Valore
Densità a 25/25°C	ASTM D - 1298		0,900 - 0,950
Punto di infiammabilità v.a.	ASTM D - 92	°C	200
Viscosità dinamica a 160°C, y=10s ⁻¹	SNV 671908/74	Pa • s	0,03 - 0,05
Solubilità in tricloroerilene	ASTM D - 2042	% in peso	99,5
Numero di neutralizzazione	IP 213	mg/KOH/g	1,5-2,5
Contenuto di acqua	ASTM D - 95	% in volume	1
Contenuto di azoto	ASTM D - 3228	% in peso	0,8-1,0

Miscela

La miscela degli aggregati di primo impiego, da adottarsi per i diversi strati, deve avere una composizione granulometrica contenuta nei fusi riportati in Tabella 6.

La percentuale di legante totale (compreso il bitume presente nel conglomerato da riciclare), riferita al peso degli aggregati, deve essere compresa nei limiti indicati nella stessa Tabella 6.

Tabella 6

Conic animalli e	a cotoco: LINIT	Page	Dindon	Usura		
Serie crivelli e	e setacci ONI	Base	Binder	Α	В	С
Crivello	40	100	-	-	-	-
Crivello	30	80-100	-	-	-	-
Crivello	25	70-95	100	100	-	-
Crivello	15	45-70	65-85	90-100	100	-
Crivello	10	35-60	55-75	70-90	70-90	100
Crivello	5	25-50	35-55	40-60	40-60	45-65
Setaccio	2	20-35	25-38	25-38	25-38	28-45
Setaccio	0,4	6-20	10-20	11-20	11-20	13-25
Setaccio	0,18	4-14	5-15	8-15	8-15	8-15
Setaccio	0,075	4-8	4-8	6-10	6-10	6-10
% di bitume		4,0-5,0	4,5-5,5	4,8-5,8	5,0-6,0	5,2-6,2

Per i tappeti di usura il fuso A è da impiegare per spessori superiori a 4 cm, il fuso B per spessori di 3 – 4 cm, il fuso C per spessori inferiori a 3 cm.

La quantità di bitume di effettivo impiego deve essere determinata mediante lo studio della miscela con metodo volumetrico. In via transitoria si potrà utilizzare, in alternativa, il metodo Marshall.

Le caratteristiche richieste per lo strato di base, il binder ed il tappeto di usura sono riportate in Tabella 7 e Tabella 8.

Tabella 7 - METODO VOLUMETRICO

		Strato pavimentazione			
Condizioni di prova	Unità di misura	Base	Binder	Usura	
Angolo di rotazione			1.25° ± 0.02		
Velocità di rotazione	Rotazioni/min		30		
Pressione verticale	Кра		600		
Diametro del provino	mm	150			
Risultati richiesti					
Vuoti a 10 rotazioni	%	10-14	10-14	10-14	
Vuoti a 100 rotazioni (*)	%	3-5	3-5	4-6	
Vuoti a 180 rotazioni	%	>2	>2	>2	
Resistenza a trazione indiretta a 25°C (**)	N/mm ²			>0,6	
Coefficiente di trazione indiretta a 25°C (**)	N/mm ²			>50	
Perdita di resistenza a trazione indiretta a 25°C dopo 15 giorni di immersione in acqua	%	≤ 25	≤ 25	≤ 25	

^(*) La densità ottenuta con 100 rotazioni della pressa giratoria viene indicata nel seguito con DG

Sulla miscela definita con la pressa giratoria (provini confezionati al 98% della DG) deve essere sperimentalmente determinato un opportuno parametro di rigidezza (modulo complesso, modulo elastico, ecc.) che deve soddisfare le prescrizioni per esso indicate nel progetto della pavimentazione ed ha la funzione di costituire il riferimento per i controlli alla stesa.

Tabella 8 - METODO MARSHALL

		Strato pavimentazione		
Condizioni di prova	Unità di misura	Base	Binder	Usura
Costipamento		75 colpi x	c faccia	
Risultati richiesti				
Stabilità Marshall	KN	8	10	11
Rigidezza Marshall	KN/mm	>2,5	3-4,5	3-4,5
Vuoti residui (*)	%	4-7	4-6	3-6
Perdita di Stabilità Marshall dopo 15 giorni	%	≤ 25	≤ 25	≤ 25
di immersione in acqua				
Resistenza a trazione indiretta a 25 °C	N/mm ²			> 0,7
Resistenza a trazione indiretta a 25 °C	N/mm ²	≤ 25	≤ 25	> 70
(*) La densità Marshall viene indicata nel seguito	con D _M			

Accettazione del materiale

L'Impresa è tenuta a presentare alla Direzione Lavori, con congruo anticipo rispetto all'inizio delle lavorazioni e per ciascun cantiere di produzione, la composizione delle miscele che intende adottare;

ciascuna composizione proposta deve essere corredata da una completa documentazione degli studi effettuati.

Una volta accettato da parte della Direzione Lavori lo studio della miscela proposto, l'Impresa deve attenervisi rigorosamente.

Nella curva granulometrica sono ammessi scostamenti delle singole percentuali dell'aggregato grosso di \pm 5 per lo strato di base e di \pm 3 per gli strati di binder ed usura; sono ammessi scostamenti dell'aggregato fino (passante al crivello UNI n. 5) contenuti in \pm 2; scostamenti del passante al setaccio UNI 0,075 mm contenuti in \pm 1,5. Per la percentuale di bitume è tollerato uno scostamento di \pm 0,25.

Tali valori devono essere soddisfatti dall'esame delle miscele prelevate alla stesa, come pure dall'esame delle carote prelevate in sito, tenuto conto per queste ultime della quantità teorica del bitume di ancoraggio.

Confezione delle miscele

Il conglomerato deve essere confezionato mediante impianti fissi automatizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

La produzione di ciascun impianto non deve essere spinta oltre la sua potenzialità, per garantire il perfetto essiccamento, l'uniforme riscaldamento della miscela ed una perfetta vagliatura che assicuri una idonea riclassificazione delle singole classi degli aggregati. Possono essere impiegati anche impianti continui (tipo drum-mixer) purché il dosaggio dei componenti la miscela sia eseguito a peso, mediante idonee apparecchiature la cui efficienza deve essere costantemente controllata.

L'impianto deve comunque garantire uniformità di produzione ed essere in grado di realizzare le miscele rispondenti a quelle indicate nello studio presentato ai fini dell'accettazione.

Ogni impianto deve assicurare il riscaldamento del bitume alla temperatura richiesta ed a viscosità uniforme

^(**) Su provini confezionati con 100 rotazioni della pressa giratoria

fino al momento della miscelazione oltre al perfetto dosaggio sia del bitume che dell'additivo.

La zona destinata allo stoccaggio degli inerti deve essere preventivamente e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possono compromettere la pulizia degli aggregati. Inoltre i cumuli delle diverse classi devono essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori esequita con la massima cura.

Il tempo di miscelazione deve essere stabilito in funzione delle caratteristiche dell'impianto, in misura tale da permettere un completo ed uniforme rivestimento degli inerti con il legante. L'umidità degli aggregati all'uscita dell'essiccatore non deve superare lo 0,25% in peso.

La temperatura degli aggregati all'atto della miscelazione deve essere compresa tra 160°C e 180° C e quella del legante tra 150° C e 170° C, in rapporto al tipo di bitume impiegato.

Per la verifica delle suddette temperature gli essiccatori, le caldaie e le tramogge degli impianti devono essere muniti di termometri fissi perfettamente funzionanti e periodicamente tarati.

Preparazione delle superfici di stesa

Prima della realizzazione di uno strato di conglomerato bituminoso è necessario preparare la superficie di stesa allo scopo di garantire una adeguata adesione all'interfaccia mediante l'applicazione, con dosaggi opportuni, di emulsioni bituminose aventi caratteristiche specifiche. A seconda che lo strato di supporto sia in misto granulare oppure in conglomerato bituminoso la lavorazione corrispondente prenderà il nome rispettivamente di mano di ancoraggio e mano d'attacco. Per mano di ancoraggio si intende una emulsione bituminosa a rottura lenta e bassa viscosità, applicata sopra uno strato in misto granulare prima della realizzazione di uno strato in conglomerato bituminoso. Scopo di tale lavorazione è quello di riempire i vuoti dello strato non legato irrigidendone la parte superficiale fornendo al contempo una migliore adesione per l'ancoraggio del successivo strato in conglomerato bituminoso.

Il materiale da impiegare a tale fine è rappresentato da una emulsione bituminosa cationica, le cui caratteristiche sono riportate in Tabella 9, applicata con un dosaggio di bitume residuo almeno pari a 1,0 Kg/m².

Tabella 9

Indicatore di qualità	Normativa	Unità di misura	Cationica 55%
Polarità	CNR 99/84		positiva
Contenuto di acqua % peso	CNR 101/84	%	4 ± 2
Contenuto di bitume +	CNR 100/84	%	55 ± 2
flussante			
Flussante (%)	CNR 100/84	%	1-6
Viscosità Engler a 20 °C	CNR 102/84	°E	2-6
Sedimentazione a 5 g	CNR 124/88	%	< 5
Residuo bituminoso			
Penetrazione a 25 ° C	UNI EN 1426 CNR 24/71	dmm	> 70
Punto di rammollimento	UNI EN 1427 CNR 35/73	°C	> 30

Per mano d'attacco si intende una emulsione bituminosa a rottura media oppure rapida (in funzione delle condizioni di utilizzo), applicata sopra una superficie di conglomerato bituminoso prima della realizzazione di un nuovo strato, avente lo scopo di evitare possibili scorrimenti relativi aumentando l'adesione all'interfaccia.

Le caratteristiche ed il dosaggio del materiale da impiegare variano a seconda che l'applicazione riguardi la costruzione di una nuova sovrastruttura oppure un intervento di manutenzione.

Nel caso di nuove costruzioni, il materiale da impiegare è rappresentato da una emulsione bituminosa cationica (al 60 % oppure al 65 % di legante), le cui caratteristiche sono riportate in Tabella 10, dosata in modo che il bitume residuo risulti pari a 0.30 Kg/m².

Tabella 10

Indicatore di qualità	Normativa	Unità di misura	Cationica 60%	Cationica 65%
Polarità	CNR 99/84		positiva	positiva
Contenuto di acqua % peso	CNR 101/84	%	40 ± 2	3 ± 2
Contenuto di bitume + flussante	CNR 100/84	%	60 ± 2	65 ± 2
Flussante (%)	CNR 100/84	%	1-4	1-4
Viscosità Engler a 20 °C	CNR 102/84	°E	5-10	15-20
Sedimentazione a 5 g	CNR 124/88	%	< 8	< 8
Residuo bituminoso				
Penetrazione a 25 ° C	UNI EN 1426 CNR 24/71	dmm	> 70	> 70
Punto di rammollimento	UNI EN 1427 CNR 35/73	°C	> 40	> 40

Qualora il nuovo strato venga realizzato sopra una pavimentazione esistente è suggerito, in particolare per autostrade e strade extraurbane principali, l'utilizzo di una emulsione bituminosa modificata avente le caratteristiche riportate in Tabella 11, dosata in modo che il bitume residuo risulti pari a 0.35 Kg/m².

Prima della stesa della mano d'attacco l'Impresa dovrà rimuovere tutte le impurità presenti e provvedere alla sigillatura di eventuali zone porose e/o fessurate mediante l'impiego di una malta bituminosa sigillante.

Tabella 11

Indicatore di qualità	Normativa	Unità di misura	Modificata 70%
Polarità	CNR 99/84		positiva
Contenuto di acqua % peso	CNR 101/84	%	30 ± 1
Contenuto di bitume + flussante	CNR 100/84	%	70 ± 1
Flussante (%)	CNR 100/84	%	0
Viscosità Engler a 20 °C	CNR 102/84	°E	> 20
Sedimentazione a 5 g	CNR 124/88	%	< 5
Residuo bituminoso			
Penetrazione a 25 ° C	UNI EN 1426 CNR 24/71	dmm	50-70
Punto di rammollimento	UNI EN 1427 CNR 35/73	°C	> 65
Ritorno elastico a 25 °C	UNI EN 13398	%	> 75

Nel caso di stesa di conglomerato bituminoso su pavimentazione precedentemente fresata, è ammesso l'utilizzo di emulsioni bituminose cationiche e modificate maggiormente diluite (fino ad un massimo del 55 % di bitume residuo) a condizione che gli indicatori di qualità (valutati sul bitume residuo) e le prestazioni richieste rispettino gli stessi valori riportati rispettivamente nella Tabella 10 e nella Tabella 11.

Ai fini dell'accettazione del legante per mani d'attacco, prima dell'inizio dei lavori, l'Impresa è tenuta a predisporre la qualificazione del prodotto tramite certificazione attestante i requisiti indicati ed a produrre copia dello studio prestazionale eseguito con il metodo ASTRA rilasciato dal produttore.

Posa in opera delle miscele.

La posa in opera dei conglomerati bituminosi verrà effettuata a mezzo di macchine vibrofinitrici in perfetto stato di efficienza e dotate di automatismi di autolivellamento.

Le vibrofinitrici devono comunque lasciare uno strato finito perfettamente sagomato, privo di sgranamenti, fessurazioni ed esente da difetti dovuti a segregazione degli elementi litoidi più grossi.

Nella stesa si deve porre la massima cura alla formazione dei giunti longitudinali preferibilmente ottenuti mediante tempestivo affiancamento di una strisciata alla precedente.

Qualora ciò non sia possibile il bordo della striscia già realizzata deve essere spalmato con emulsione bituminosa cationica per assicurare la saldatura della striscia successiva.

Se il bordo risulterà danneggiato o arrotondato si deve procedere al taglio verticale con idonea attrezzatura. I giunti trasversali derivanti dalle interruzioni giornaliere devono essere realizzati sempre previo taglio ed asportazione della parte terminale di azzeramento.

La sovrapposizione dei giunti longitudinali tra i vari strati deve essere programmata e realizzata in maniera che essi risultino fra di loro sfalsati di almeno 20 cm e non cadano mai in corrispondenza delle due fasce della corsia di marcia normalmente interessata dalle ruote dei veicoli pesanti.

Il trasporto del conglomerato dall'impianto di confezione al cantiere di stesa deve avvenire mediante mezzi di trasporto di adeguata portata, efficienti e veloci e comunque sempre dotati di telone di copertura per evitare i raffreddamenti superficiali eccessivi e formazione di crostoni.

La temperatura del conglomerato bituminoso all'atto della stesa controllata immediatamente dietro la finitrice deve risultare in ogni momento non inferiore a 140° C.

La stesa dei conglomerati deve essere sospesa quando le condizioni meteorologiche generali possono pregiudicare la perfetta riuscita del lavoro.

Gli strati eventualmente compromessi devono essere immediatamente rimossi e successivamente ricostruiti a spese dell'Impresa.

La compattazione dei conglomerati deve iniziare appena stesi dalla vibrofinitrice e condotta a termine senza interruzioni.

L'addensamento deve essere realizzato preferibilmente con rulli gommati.

Per gli strati di base e di binder possono essere utilizzati anche rulli con ruote metalliche vibranti e/o combinati, di idoneo peso e caratteristiche tecnologiche avanzate in modo da assicurare il raggiungimento delle massime densità ottenibili.

Per lo strato di usura può essere utilizzato un rullo tandem a ruote metalliche del peso massimo di 15t.

Si avrà cura inoltre che la compattazione sia condotta con la metodologia più adeguata per ottenere uniforme addensamento in ogni punto ed evitare fessurazioni e scorrimenti nello strato appena steso. La

superficie degli strati deve presentarsi, dopo la compattazione, priva di irregolarità ed ondulazioni.

Un'asta rettilinea lunga 4 m posta in qualunque direzione sulla superficie finita di ciascuno strato deve aderirvi uniformemente; può essere tollerato uno scostamento massimo di 5 mm.

La miscela bituminosa dello strato di base verrà stesa dopo che sia stata accertata dalla Direzione Lavori la rispondenza della fondazione ai requisiti di quota, sagoma, densità e portanza indicati in progetto.

Prima della stesa del conglomerato bituminoso su strati di fondazione in misto cementato deve essere rimossa, per garantirne l'ancoraggio, la sabbia eventualmente non trattenuta dall'emulsione stesa precedentemente a protezione del misto cementato stesso. Nel caso di stesa in doppio strato essi devono essere sovrapposti nel più breve tempo possibile. Qualora la seconda stesa non sia realizzata entro le 24 ore successive tra i due strati deve essere interposta una mano di attacco di emulsione bituminosa in ragione di 0,3 Kg/m² di bitume residuo.

La miscela bituminosa del binder e del tappeto di usura verrà stesa sul piano finito dello strato sottostante dopo che sia stata accertata dalla Direzione dei Lavori la rispondenza di quest'ultimo ai requisiti di quota, sagoma, densità e portanza indicati in progetto.

Controlli

I controlli si differenziano in funzione del tipo di strada.

Il controllo della qualità dei conglomerati bituminosi e della loro posa in opera deve essere effettuato mediante prove di laboratorio sui materiali costituenti, sulla miscela, sulle carote estratte dalla pavimentazione e con prove in situ.

8.6 Tappeto d'usura in conglomerato bituminoso colorato

Descrizione

Un conglomerato bituminoso, confezionato con un legante neutro, permette di ottenere una pavimentazione avente un aspetto naturale ed architettonico, un elevato valore ambientale (strade urbane, zone pedonali, marciapiedi, strade private, piste ciclabili, parcheggi, campi sportivi ecc.), migliorando la sicurezza del traffico in zone a rischio (aree di sosta, incroci, corsie di emergenza, ecc.) e la visibilità della superficie stradale (gallerie, ecc.).

Aggregati

L'aggregato grosso, con dimensioni (frazione > 4mm) deve essere costituito da elementi ottenuti dalla frantumazione di rocce lapidee, da elementi naturali tondeggianti, da elementi naturali tondeggianti frantumati, da elementi naturali a spigoli vivi. Tali elementi potranno essere di provenienza o natura petrografia diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella seguente tabella:

Prova	Valore	Norma
Coefficiente Los Angeles	≤ 24 %	UNI EN 1097-2 CNR 34/73
Quantità di frantumato	100 %	\

Gli inerti dovranno essere di provenienza o natura petrografia tale da garantire le colorazioni richieste in fase di progetto.

La percentuale delle sabbie derivanti da frantumazione, che costituiscono parte dell'aggregato fino (frazione < 4mm), viene di volta in volta stabilita dalla Direzione dei Lavori. Non deve comunque essere inferiore al 70%. La restante parte è costituita da sabbie naturali di fiume.

Prova	Valore	Norma
Equivalente in sabbia	≥ 65 %	UNI EN 933-8 CNR 27/72

Additivo minerale

Qualora l'additivo minerale, proveniente dagli aggregati utilizzati per comporre la miscela di aggregati, dovrà essere integrato con dell'additivo derivante dalla macinazione di rocce e deve essere preferibilmente costituito da cemento o carbonato di calcio. L'additivo di integrazione dovrà soddisfare le seguenti specifiche.

Prova Valore

Potere rigidificante - rapporto filler/bitume	1,2 ÷ 1,8	CNR 122/88
Passante in peso per via umida:		
Setaccio UNI 0.4 mm	100 %	UNI EN 933-1 CNR 75/80*
Setaccio UNI 0.18 mm	100 %	UNI EN 933-1 CNR 75/80*
Setaccio UNI 0.075 mm	85 %	UNI EN 933-1 CNR 75/80*

Legante

Come legante, dovrà essere utilizzato un Legante Neutro. La quantità di legante sul peso totale degli inerti, dovrà essere compreso tra il $5\% \div 6\% \pm 0,25$, in relazione alla curva granulometrica utilizzata.

Il legante è composto da due fasi, una solida ed una liquida. La fase solida và aggiunta per prima e richiede almeno 20 sec. di miscelazione con gli inerti caldi, dopodiché si aggiunge la fase liquida e si lascia miscelare per non meno di 20 sec.

Prova	Valore	Norma
Specifiche tecniche	Standard	Valori
Penetrazione a 25 °C	ASTM D 5	55 - 75
Punto di rammollimento °C	ASTM D 36	55 - 65
Punto di rottura (Fraass) °C	UNI EN 12593	≤ - 12
Viscosità dinamica a 160 °C (Pa	UNI EN 13302	0,20 - 0,60

Miscela

La miscela di aggregati lapidei dovrà presentare salvo differente richiesta della Direzioni dei Lavori, una composizione granulometrica compresa all'interno dei due fusi di riferimento indicati nella seguente tabella:

STRATO DI USURA LEGANTE NEUTRO		
Serie crivelli e setacci UNI	% Passante	
Setaccio 15	100	
Setaccio 10	70 - 90	
Setaccio 5	40 - 60	
Setaccio 2	25 - 38	
Setaccio 0.4	10 - 20	
Setaccio 0.18	8 - 15	
Setaccio 0.075	6 - 10	

Il conglomerato confezionato dovrà garantire i seguenti requisiti:

Prova	Valore	Norma
Stabilità Marshall	≥ 900 daN	UNI EN 12697-34 CNR 30/73
Stabilità Marshall Stabilità/Scorrimento	≥ 300 daN/mm	UNI EN 12697-34 CNR 30/73
Scorrimento Marshall	2mm. ÷ 5 mm	UNI EN 12697-34 CNR 30/73
Vuoti residui	3% ÷ 6 %	UNI EN 12697-8 CNR 39/73
Stabilità Marshall dopo 7 gg. di immersione in acqua	≥ 75%*	UNI EN 12697-34 CNR 149/92

Confezionamento dei conglomerati bituminosi

Devono essere utilizzati impianti fissi, automatizzati e di tipo discontinuo, approvati dalla Direzione dei Lavori, d'idonee caratteristiche, mantenuti perfettamente funzionanti con una costante e mirata manutenzione.

L'impianto deve essere di potenzialità produttiva proporzionata alle esigenze di produzione, deve inoltre garantire uniformità del prodotto ed essere in grado di produrre miscele rispondenti alle specifiche del progetto. L'Appaltatore dovrà avere un approvvigionamento costante e monitorato di tutti i materiali necessari.

La temperatura di stoccaggio degli aggregati lapidei al momento della miscelazione deve essere garantita (compresa tra i 130°C e i 150°C). Dopo che è avvenuto lo scarico degli aggregati nel mescolatore, dovrà essere aggiunto il legante neutro.

L'immissione del legante neutro deve avvenire mediante dispositivi meccanici servo assistiti collegati all'impianto di produzione, in modo tale da garantire con precisione la quantità prevista, anche in presenza di variazioni della quantità della miscela prodotta. Qualora non fosse possibile disporre l'impianto di un sistema automatizzato, sarà possibile addizionare il legante manualmente attraverso lo sportello del mescolatore all'impianto, solo dopo approvazione da parte della Direzione dei Lavori.

La produzione del conglomerato bituminoso neutro dovrà avvenire rispettando lo schema seguente:

- 1. scarico degli inerti nel mescolatore,
- 2. aggiunta della quantità prestabilita di legante neutro (fase solida),
- 3. lasciare mescolare per non meno di 20",
- 4. aggiunta della quantità prestabilita di legante neutro (fase liquida),
- 5. lasciare mescolare per non meno di 20",
- 6. scaricare il conglomerato.

Risulta molto importante, prima di iniziare la produzione del conglomerato neutro, pulire al meglio il mescolatore ed il silos di stoccaggio dalle tracce di bitume nero che potrebbero in qualche modo inquinare il colore neutro finale del conglomerato. Tale pulizia può essere eseguita effettuando alcune mescole utilizzando esclusivamente gli inerti caldi senza l'aggiunta di nessun tipo di legante, sino a quando gli inerti che escono dal mescolatore risultano perfettamente puliti.

Tutti i prodotti e/o materiali impiegati, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

8.7 Trattamenti superficiali

Immediatamente prima di dare inizio ai trattamenti superficiali di prima o di seconda mano, I'Impresa delimiterà i bordi del trattamento con un arginello in sabbia onde ottenere i trattamenti stessi profilati ai margini.

Ultimato il trattamento resta a carico dell'Impresa l'ulteriore profilatura mediante asportazione col piccone delle materie esuberanti e colmatura delle parti mancanti col pietrischetto bituminoso.

Trattamento con emulsione a freddo

Preparata la superficie da trattare, si procederà all'applicazione dell'emulsione bituminosa al 55%, in ragione, di norma, di kg 3 per metro quadrato.

Tale quantitativo dovrà essere applicato in due tempi.

In un primo tempo sulla superficie della massicciata dovranno essere sparsi kg 2 di emulsione bituminosa e dm³ 12 di graniglia da mm 10 a mm. 15 per ogni metro quadrato.

In un secondo tempo, che potrà aver luogo immediatamente dopo, verrà sparso sulla superficie precedente il residuo di kg 1 di emulsione bituminosa e dm³ 8 di graniglia da mm 5 a mm 10 per ogni metro quadrato.

Allo spargimento della graniglia seguirà una leggera rullatura, da eseguirsi preferibilmente con rullo compressore a tandem, per ottenere la buona penetrazione della graniglia negli interstizi superficiali della massicciata.

Lo spargimento dell'emulsione dovrà essere eseguito con spanditrici a pressione che garantiscano l'esatta ed uniforme distribuzione, sulla superficie trattata, del quantitativo di emulsione prescritto per ogni metro quadrato di superficie nonché, per la prima applicazione, la buona penetrazione nel secondo strato della massicciata fino a raggiungere la superficie del primo, sì da assicurare il legamento dei due strati.

Lo spandimento della graniglia o materiale di riempimento dovrà essere fatto con adatte macchine che assicurino una distribuzione uniforme.

Per il controllo della qualità del materiale impiegato si preleveranno i campioni con le modalità stabilite

precedentemente.

Indipendentemente da quanto possa risultare dalle prove di laboratorio e dal preventivo benestare da parte della Direzione dei Lavori sulle forniture delle emulsioni, l'Impresa resta sempre contrattualmente obbligata a rifare tutte quelle applicazioni che, dopo la loro esecuzione, non abbiano dato soddisfacenti risultati, e che sotto l'azione delle piogge abbiano dato segni di rammollimento, stemperamento o si siano dimostrate soggette a facile asportazione mettendo a nudo la sottostante massicciata.

Trattamento con bitume a caldo

Il trattamento con bitume a caldo, su pavimentazioni bitumate, sarà fatto utilizzando almeno 1 Kg/m² di bitume, dopo una accurata ripulitura, fatta esclusivamente a secco, della pavimentazione esistente.

Gli eventuali rappezzi che si rendessero necessari, saranno eseguiti con la stessa tecnica a cura e spese dell'Impresa.

L'applicazione di bitume a caldo sarà eseguita sul piano viabile perfettamente asciutto ed in periodo di caldo secco.

Ciò implica che i mesi più favorevoli sono quelli da maggio a settembre e che in caso di pioggia il lavoro si debba sospendere.

Il bitume sarà riscaldato a temperatura fra 160°C e 180°C entro adatte caldaie che permettono il controllo della temperatura stessa.

L'applicazione dovrà essere fatta mediante spanditrice a pressione in modo tale da garantire l'esatta distribuzione con perfetta uniformità su ogni metro quadrato del quantitativo di bitume prescritto.

Con tale applicazione, debitamente ed immediatamente ricoperta di graniglia di pezzatura corrispondente per circa il 70% alle massime dimensioni prescritte ed in quantità di circa m³ 1,20 per 100 m², dovrà costituirsi il manto per la copertura degli elementi pietrosi della massicciata precedentemente trattata con emulsione bituminosa.

Allo spandimento della graniglia seguirà una prima rullatura con rullo leggero e successivamente altra rullatura con rullo di medio tonnellaggio, non superiore alle t. 14, in modo da ottenere la buona penetrazione del materiale nel bitume.

Per il controllo della qualità del materiale impiegato, si preleveranno i campioni con le modalità prescritte.

Verificandosi in seguito affioramenti di bitume ancora molle, l'Impresa provvederà, senza ulteriore compenso, allo spandimento della conveniente quantità di graniglia nelle zone che lo richiedano, procurando che essa abbia ad incorporarsi nel bitume a mezzo di adatta rullatura leggera, in modo da saturarla completamente.

L'Impresa sarà obbligata a rifare, a sua cura, tutte quelle parti della pavimentazione che per cause qualsiasi dessero indizio di cattiva o mediocre riuscita e cioè presentassero accentuate deformazioni della sagoma stradale, ovvero ripetute abrasioni superficiali non giustificate dalla natura e dalla intensità del traffico.

La Stazione Appaltante si riserva la facoltà di variare le modalità esecutive di applicazione del bitume a caldo, senza che per questo l'Appaltatore possa sollevare eccezioni ed avanzare particolari richieste di compensi.

Tanto nei trattamenti di prima mano con emulsione bituminosa, quanto in quelli di seconda mano con bitume a caldo, l'Impresa è obbligata a riportare sul capostrada la graniglia eventualmente non incorporata. Quella che decisamente non può essere assorbita andrà raccolta e depositata nelle piazzole, rimanendo di proprietà della Stazione Appaltante.

Gli oneri di cui sopra sono compresi e compensati nei prezzi di Elenco e pertanto nessun maggior compenso spetta all'Impresa per tale titolo.

Trattamento a caldo con bitume liquido

Il bitume liquido da impiegare per esecuzione di trattamenti dovrà essere quello ottenuto con flussaggio di bitume a penetrazione $100 \div 120$ e costituito, se di tipo 150/300 per almeno l'80% da bitume, se di tipo 350/700 per almeno l'85% da bitume e per la restante parte, in ambedue i casi, da olio di catrame.

I bitumi liquidi, da impiegarsi per l'esecuzione di trattamenti superficiali, dovranno avere le caratteristiche prescritte dal fascicolo n. 7 delle norme del C.N.R del 1957.

Il tipo di bitume liquido da impiegarsi sarà prescritto dalla Direzione dei Lavori tenendo conto che per la temperatura ambiente superiore ai 15°C si dovrà dare la preferenza al bitume liquido 350/700, mentre invece con temperatura ambiente inferiore dovrà essere impiegato quello con viscosità 150/300.

In nessun caso si dovrà lavorare con temperature ambienti inferiori agli 8°C. Con le consuete modalità si procederà al prelievo dei campioni prima dell'impiego, i quali verranno sottoposti all'analisi presso Laboratori Ufficiali.

Il vecchio manto bituminoso dovrà essere sottoposto ad una accurata operazione di depolverizzazione e raschiatura della superficie, mediante spazzoloni, scope metalliche e raschietti.

Preparata la tratta da sottoporre a trattamento sarà distribuito sulla superficie, con distribuzione a pressione, il bitume liquido nella quantità media di 1 Kg/m² previo suo riscaldamento a temperatura tra i 100°C e 110°C

entro adatti apparecchi che permettano il controllo della temperatura stessa.

La distribuzione del bitume dovrà avvenire con perfetta uniformità su ogni metro quadrato nel quantitativo di bitume prescritto.

Dovranno evitarsi in modo assoluto le chiazze e gli eccessi di bitume, rimanendo stabilito che le aree cosi trattate dovranno essere raschiate e sottoposte a nuovo trattamento a totale spesa dell'Impresa.

Immediatamente dopo lo spandimento del bitume, la superficie stradale dovrà essere ricoperta con pietrischetto in ragione di litri 20 per metro quadrato, di cui litri 17 dovranno essere di pezzatura rigorosa da mm 16 a mm 18 e litri 3 di graniglia da mm 2 a mm 4.

Pertanto, gli ammannimenti rispettivi di pietrischetto e di graniglia su strada, dovranno essere fatti a cumuli alternati rispondenti singolarmente alle diverse pezzature e nei volumi rispondenti ai quantitativi fissati.

I quantitativi di pietrischetto e di graniglia cosi ammanniti verranno controllati con apposite misurazioni da eseguirsi prima dell'inizio della bitumatura.

Il pietrischetto della pezzatura più grossa verrà sparso uniformemente sulla superficie bitumata ed in modo che gli elementi siano fra di loro a stretto contatto.

Dopo pochi passaggi di rullo pesante si procederà al conguaglio delle eventuali irregolarità di sparsa del pietrischetto suddetto, facendo le opportune integrazioni e, quindi, si procederà allo spargimento della graniglia minuta ad intasamento dei vuoti rimasti fra gli elementi del pietrischetto precedentemente sparso.

Allo spandimento completo del pietrischetto e della graniglia seguirà la rullatura con rullo pesante, in modo da ottenere la buona penetrazione del materiale nel bitume.

Si dovrà aver cura che il pietrischetto e la graniglia, all'atto dello spargimento, siano bene asciutti ed in precedenza riscaldati dal sole rimanendo vietato l'impiego di materiale umido.

I tratti sottoposti a trattamento dovranno rimanere chiusi al traffico per almeno 18 ore.

L'Impresa provvederà a sua cura e spese all'apposizione di cartelli di segnalazione, cavalletti, ecc., occorrenti per la chiusura al traffico delle estese trattate.

Il pietrischetto, che risulterà non incorporato nel bitume, per nessun motivo potrà essere impiegato in trattamenti di altre estese di strada.

Infine l'Impresa provvederà, con i propri operai, alla esatta profilatura dei bordi della nuova pavimentazione, al ricollocamento in opera delle punteggiature marginali spostate dal compressore, nonché alla raschiatura ed eventuale pulitura di zanelle, di cordonate, di marciapiedi, imbrattati durante l'esecuzione dei lavori, essendo tali oneri stati compresi nella determinazione dei prezzi di Elenco.

Si pattuisce che quelle aree di trattamento che in prosieguo di tempo risultassero difettose, ovvero prive di penetrazione di pietrischetto e di graniglia, saranno dall'Appaltatore sottoposte, a totale sua spesa, ad un nuovo ed analogo trattamento.